Advertisement

Synthesis of NiO–CeO2 nanocomposite for electrochemical sensing of perilous 4-nitrophenol

  • Naushad AhmadEmail author
  • Manawwer Alam
  • Rizwan Wahab
  • Javed Ahmad
  • Mohd Ubaidullah
  • Anees A. Ansari
  • Nawaf M. Alotaibi
Article
  • 24 Downloads

Abstract

Well-crystalline NiO–CeO2 nanocomposites have been fabricated by ignition method and investigated by X-ray diffraction, Fourier Transform Infrared, UV–Vis diffuse reflectance spectroscopy, Thermal gravimetric analysis, BET surface area, and transmission electron microscopy. The detailed characterizations disclosed that the pre-calcine (700 °C) nanocomposite (NCC) has two pure phases: cubic fluorite phase (CeO2) and cubic face-centered phase (NiO). Finally, the pre-calcine NCC nanocomposite was applied as electron intermediators for the electrochemical sensing of 4-nitrophenol (4-NP). Compared with as-grown modified electrode (NCG/GCE), pre-calcine electrode (NCC/GCE) exhibited more excellent conductivity and better electrocatalytic mediator for 4-NP. It was found that the NCC/GCE sensor displayed diffusion-controlled kinetics and excellent sensitivity (3.68 AμM−1 cm−2). The reduction current is directly proportional to the 4-NP concentration, ranging from 1 to 20 μM with lower detection limit of 2.48 μM.

Notes

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-218.

References

  1. 1.
    A.L. Buikema, M.J. McGimres, J. Cairns, Phenolics in aquatic ecosystems: a selected review of recent literature. Mar. Environ. Res. 2, 87–181 (1979)Google Scholar
  2. 2.
    C. Schummer, C. Groff, J.A. Chami, F. Jaber, M. Millet, Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France. Sci. Total Environ. 407, 5637–5643 (2009)Google Scholar
  3. 3.
    P. Wang, J. Xiao, A. Liao, P. Li, M. Guo, Y. Xia, Electrochemical determination of 4-nitrophenol using uniform nanoparticle film electrode of glass carbon fabricated facilely by square wave potential pulses. Electrochim. Acta 176, 448–455 (2015)Google Scholar
  4. 4.
    X.M. Xu, Z. Liu, X. Zhang, S. Duan, S. Xu, C.L. Zhou, Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: simultaneous determination of nitrophenol isomers. Electrochim. Acta 58, 142–149 (2011)Google Scholar
  5. 5.
    S.S. Li, D. Du, J. Huang, H.Y. Tu, Y.Q. Yang, A.D. Zhang, One-step electrode-position of a molecularly imprinting chitosan/phenyltrimethoxysilane/AuNPshybrid film and its application in the selective determination of p-nitrophenol. Analyst 138, 2761–2768 (2013)Google Scholar
  6. 6.
    J.A. Padilla-Sanchez, P. Plaza-Bolanos, R. Romero-Gonzalez, N. Barco-Bonilla, J.L. Martin ez-Vidal, A. Garrido-Frenich, Simultaneous analysis of chlorophenols, alkyl phenols, nitrophenols and cresols in waste water effluents, using solid phase extraction and further determination by gas chromatography-tandem mass spectro metry. Talanta 85, 2397–2404 (2011)Google Scholar
  7. 7.
    R.J. Chung, M.I. Leong, S.D. Huang, Determination of nitrophenols using ultra- high pressure liquid chromatography and a new manual shaking-enhanced, ultra sound-assisted emulsification microextraction method based on solidification of a floating organic droplet. J. Chromatogr. A 1246, 55–61 (2012)Google Scholar
  8. 8.
    M.C. Alcudia-Leon, R. Lucena, S. Cardenas, M. Valcarcel, Determination of phenols in waters by stir membrane liquid-liquid-liquid microextraction coupled to liquid chromatography with ultraviolet detection. J Chromatogr. A 1218(2176–21), 81 (2011)Google Scholar
  9. 9.
    F. Bagheban-Shahri, A. Niazi, A. Akrami, Simultaneous spectrophotometric determination of nitrophenol isomers in environmental samples using first derivative of the density ratio spectra. J. Chem. Health Risks 2, 21–28 (2012)Google Scholar
  10. 10.
    X.F. Guo, Z.H. Wang, S.P. Zhou, The separation and determination of nitrophenol isomers by high-performance capillary zone electrophoresis. Talanta 64, 135–139 (2004)Google Scholar
  11. 11.
    M. Manera, M. Miró, J.M. Estela, V. Cerdà, M.A. Segundo, J.L.F.C. Lima, Flow-through solid-phase reflectometric method for simultaneous multiresidue determina- tion of nitrophenol derivatives. Anal. Chim. Acta 600, 155–163 (2007)Google Scholar
  12. 12.
    S. Tingry, C. Innocent, S. Touil, A. Deratani, P. Seta, Carbon paste biosensor for phenol detection of impregnated tissue: modification of selectivity by using bcyclo dextrin-containing PVA membrane. Mater. Sci. Eng. C 26, 222–226 (2006)Google Scholar
  13. 13.
    J. Li, D. Kuang, Y. Feng, F. Zhang, Z. Xu, M. Liu, A graphene oxide-based electro chemical sensor for sensitive determination of 4-nitrophenol. J. Hazard. Mater. 201–202, 250–259 (2012)Google Scholar
  14. 14.
    Y. Xu, Y. Wang, Y. Ding, L. Luo, X. Liu, Y. Zhang, Determination of p-nitro phenol on carbon paste electrode modified with a nanoscaled compound oxide Mg (Ni) FeO. J. Appl. Electrochem. 43, 679–687 (2013)Google Scholar
  15. 15.
    Y.L. Yang, B. Unnikrishnan, S.M. Chen, Amperometric determination of 4- nitro phenol at multi-walled carbon nanotube-poly(diphenylamine) composite modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 3902–3912 (2011)Google Scholar
  16. 16.
    H. Yin, Q. Ma, Y. Zhou, S. Ai, L. Zhu, Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode. Electrochim. Acta 55, 7102–7108 (2010)Google Scholar
  17. 17.
    L.Q. Luo, X.L. Zou, Y.P. Ding, Q.S. Wu, Derivative voltammetric direct simultane- ous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sens. Actuators B 135, 61–65 (2008)Google Scholar
  18. 18.
    L. Chu, L. Han, X. Zhang, Electrochemical simultaneous determination of nitro phenol isomers at nano-gold modified glassy carbon electrode. J. Appl. Electrochem. 41(6), 687–694 (2011)Google Scholar
  19. 19.
    I.G. Casella, M. Contursi, The electrochemical reduction of nitrophenols on silver globular particles electrodeposited under pulsed potential conditions. J Electron. Chem. Soc. 154, D697–D702 (2007)Google Scholar
  20. 20.
    W. Sun, M.X. Yang, Q. Jiang, K. Jiao, Direct electrocatalytic reduction of p-nitro phenol at room temperature ionic liquid modified electrode. Chin. Chem. Lett. 19, 1156–1158 (2008)Google Scholar
  21. 21.
    X. Xie, Y. Li, Z. Liu, M. Haruta, W. Shen, Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458(7239), 746–749 (2009)Google Scholar
  22. 22.
    I. Celardo, J.Z. Pedersen, E. Traversa, L. Ghibelli, Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420 (2011)Google Scholar
  23. 23.
    X.Q. Liu, J. Iocozzia, Y. Wang, X. Cui, Y.H. Chen, S.Q. Zhao, Z. Li, Z.Q. Lin, Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017)Google Scholar
  24. 24.
    N.R. Elezovic, B.M. Babic, V.R. Radmilovic, S.L. Gojkovic, N.V. Krstajic, L.M. Vracar, Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J. Power Sources 175, 250–255 (2008)Google Scholar
  25. 25.
    Y. Bai, J. Wu, J. Xi, J. Wang, W. Zhu, L. Chen, X. Qiu, Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst. Electrochem. Commun. 7, 1087–1090 (2005)Google Scholar
  26. 26.
    L. Feng, J. Yang, Y. Hu, J. Zhu, C. Liu, W. Xing, Electrocatalytic properties of Pd CeOx/C anodic catalyst for formic acid electrooxidation. Int. J. Hydrog Energy 37, 4812–4818 (2012)Google Scholar
  27. 27.
    C. Zhang, F. Meng, L. Wang, M. Zhang, Z. Ding, Morphology-selective synthesis method of gear-like CeO2 microstructures and their optical properties. Mater. Lett. 130, 202–205 (2014)Google Scholar
  28. 28.
    C.R. Li, Q.T. Sun, N.P. Lu, B.Y. Chen, W.J. Dong, A facile route for the fabrication of CeO2 nanosheets via controlling the morphology of CeOHCO3 precursors. J. Cryst. Growth 343, 95–100 (2012)Google Scholar
  29. 29.
    R. Rao, M. Yang, Q. Ling, Q. Zhang, H. Liu, A. Zhang, W. Chen, Mesoporous CeO2 nanobelts synthesized by a facile hydrothermal route via controlling cationic type and concentration of alkali. Microporous Mesoporous Mater. 169, 81–87 (2013)Google Scholar
  30. 30.
    F. Niu, D. Zhang, L. Shi, X. He, H. Li, H. Mai, T. Yan, Facile synthesis, characteri- zation and low-temperature catalytic performance of Au/CeO2 nanorods. Mater. Lett. 63, 2132–2135 (2009)Google Scholar
  31. 31.
    K. Singh, A.A. Ibrahim, A. Umar, A. Kumar, G.R. Chaudhary, S. Singh, S.K. Mehta, Synthesis of CeO2–ZnO nanoellipsoids as potential scaffold for the efficient detection of 4-nitrophenol. Sens. Actuators B 202, 1044–1050 (2014)Google Scholar
  32. 32.
    C.R. Michel, A.H.M. Preciado, CO sensor based on thick films of 3D hierarchical CeO2 architectures. Sens. Actuators B 197, 177–184 (2014)Google Scholar
  33. 33.
    N.F. Hamedani, A.R. Mahjoub, A.A. khodadadi, Y. Mortazavi, CeO2 doped ZnO flower-like nanostructure sensor selective to ethanol in presence of CO and CH4. Sens. Actuators B 169, 67–73 (2012)Google Scholar
  34. 34.
    S.K. Jha, C.N. Kumar, R.P. Raj, N.S. Jha, S. Mohan, Synthesis of 3D porous CeO2/reduced graphene oxide xerogel composite and low level detection of H2O2. Electrochim. Acta 120, 308–313 (2014)Google Scholar
  35. 35.
    A. Rahim, R.A. Hameed, M. Khalil, Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium. J. Power Sources 134, 160–169 (2004)Google Scholar
  36. 36.
    C. Fan, D. Piron, A. Sleb, P. Paradis, Study of electrodeposited nickel molybdenum, nickel tungsten, cobalt molybdenum, and cobalt tungsten as hydrogen electr odes in alkaline water electrolysis. J. Electrochem. Soc. 141, 382–387 (1994)Google Scholar
  37. 37.
    M. Ranjbar, M.A. Taher, A. Sam, Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium. J. Mater. Sci.: Mater. Electron. 27(2), 1449–1456 (2016)Google Scholar
  38. 38.
    M. Ranjbar, M.S. Niasari, S.M.H. Mashkani, K.V. Rao, Solvothermal synthesis and characterization of hollow sphere-like ZnS/ZnAl2S4 nanocomposites. J. Inorg. Organomet. Polym. Mater. 22(5), 1122–1127 (2012)Google Scholar
  39. 39.
    P. Rajaei, M. Ranjbar, Synthesis and characterization of zinc oxide nano structures by green capping agent and its photocatalytic degradation of methylene blue (MB). J. Mater. Sci.: Mater. Electron. 27(2), 1708–1712 (2016)Google Scholar
  40. 40.
    M. Ranjbar, M.A. Taher, A. Sam, NiO nanostructures: novel solvent-less solid-state synthesis, characterization and MB photocatalytic degradation. J. Mater. Sci.: Mater. Electron. 26(10), 8029–8034 (2015)Google Scholar
  41. 41.
    F. Sedighi, M.E. Zare, A.S. Nasab, M. Behpour, Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29(16), 13737–13745 (2018)Google Scholar
  42. 42.
    M.R. Nasrabadi, M. Behpour, A.S. Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 27(11), 11691–11697 (2016)Google Scholar
  43. 43.
    A.S. Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M.R. Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)Google Scholar
  44. 44.
    H. Naderi, H. Sobati, A.S. Nasab, M.R. Nasrabadi, M.E. Arani, M.R. Ganjali, H. Ehrlich, Synthesis and supercapacitor application of cerium tungstate nano structure. Chem. Select 4(10), 2862–2867 (2019)Google Scholar
  45. 45.
    S.M. Pourmortazavi, M.R. Nasrabadi, A.S. Nasab, M.S. Karimi, M.R. Ganjali, S. Mirsadeghi, Electrochemical synthesis of copper carbonates nano particles through experimental design and the subsequent thermal decomposition to copper oxide. Mater. Res. Express. 6(4), 045065 (2019)Google Scholar
  46. 46.
    A.S. Nasab, M.R. Nasrabadi, H.R. Naderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlich, Sonochemical synthesis of terbium tungstate for develo ping high power supercapacitors with enhanced energy densities. Ultrason. Sonochem 45, 189–196 (2018)Google Scholar
  47. 47.
    D. Patil, N.Q. Dung, H. Jung, S.Y. Ahn, D.M. Jang, D. Kim, Enzymatic glucose bio sensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens. Bioelectron. 31, 176–181 (2012)Google Scholar
  48. 48.
    H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang, Y. Luo, Solution growth of NiO nanosheets supported on Ni foam as high performance electrodes for Super capacitors. Nanoscale Res. Lett. 9, 424 (2014)Google Scholar
  49. 49.
    R. Wahab, A. Umar, S. Dwivedi, K.J. Tomar, H.S. Shin, I.H. Hwang, ZnO nano particles: cytological effect on chick fibroblast cells and antimicrobial activities towards Escherichia coli and Bacillus subtilis. Sci. Adv. Mater. 5, 1571–1580 (2013)Google Scholar
  50. 50.
    L. Chen, L. Li, G. Li, Synthesis of CuO nanorods and their catalytic activity in the thermal decomposition of ammonium perchlorate. J. Alloys Compd. 464, 532–536 (2008)Google Scholar
  51. 51.
    E. Kumar, P. Selvarajan, K. Balasubramanian, Preparation and studies of cerium dioxide (CeO2) nanoparticles by microwave-assisted solution method. Recent Res. Sci. Technol. 2, 37–41 (2010)Google Scholar
  52. 52.
    Y. Li, X. Liu, J. Li, Preparation and characterization of CeO2 doped ZnO nano-tubes fluorescent composite. J. Rare Earth 28, 571–575 (2010)Google Scholar
  53. 53.
    T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, Magnetic and electro chemical properties of nickel oxide nanoparticles obtained by the reverse-micellar route. Solid State Sci. 8(42), 5–430 (2006)Google Scholar
  54. 54.
    X.M. Ni, Q.B. Zhao, B.B. Li, J. Cheng, H.G. Zheng, Interconnected β-Ni(OH)2 sheets and their morphology-retained transformation into mesostructured Ni. Solid State Commun. 137, 585–588 (2006)Google Scholar
  55. 55.
    X. Li, J. Li, D. Huo, Z. Xiu, X. Sun, Facile synthesis under near-atmospheric conditions and physicochemical properties of hairy CeO2 nanocrystallines. J. Phys. Chem. C 113, 1806–1811 (2009)Google Scholar
  56. 56.
    S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity (Academic Press, London, 1982)Google Scholar
  57. 57.
    S. Lowell, J.E. Shields, Powder surface area and porosity (Chapman and Hall, London, 1984)Google Scholar
  58. 58.
    G. Wang, Y. Bao, Y. Tian, J. Xia, D. Cao, Electrocatalytic activity of perovskite La1-xSrx MnO3 towards hydrogen peroxide reduction in alkaline medium. J. Power Sources 195, 6463–6467 (2010)Google Scholar
  59. 59.
    N.Q. Dung, D. Patil, H. Jung, J. Kim, D. Kim, NiO-decorated single-walled carbon nanotubes for high-performance nonenzymatic glucose sensing. Sens. Actuators B 183, 381–387 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Naushad Ahmad
    • 1
    Email author
  • Manawwer Alam
    • 1
  • Rizwan Wahab
    • 2
  • Javed Ahmad
    • 2
  • Mohd Ubaidullah
    • 1
  • Anees A. Ansari
    • 3
  • Nawaf M. Alotaibi
    • 1
  1. 1.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.Department of Zoology, College of ScienceKing Saud UniversityRiyadhKingdom of Saudi Arabia
  3. 3.King Abdullah Institute for NanotechnologyKing Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations