Photoelectrochemical performance of MoBiGaSe5 thin films deposited by vacuum deposition technique

  • S. V. PatilEmail author
  • V. B. Ghanwat
  • R. Y. Mandhare
  • V. V. Kondalkar
  • P. N. Bhosale


In the present investigation nanocrystalline mixed metal chalcogenide (MMC) MoBiGaSe5 thin films were successfully deposited by vacuum evaporation technique. The asdeposited and vacuum annealed MoBiGaSe5 thin films were studied for their optical, structural, morphological, compositional, electrical and photoelectrochemical (PEC) performance. Optical absorption studies revealed that asdeposited and vacuum annealed MoBiGaSe5 thin films showed absorption in the visible region. X-ray analysis of vacuum annealed film shows the phase transition from orthorhombic Bi2Se3 to stoichiometric hexagonal Bi2Se3 phase. The phase transition confirms the formation of hexagonal nanocrystalline MoBiGaSe5 pure phase. SEM images of the asdeposited film showed uniform well defined morphology, besides annealed sample, had diffused granular growth of uniform spheres. HRTEM images showed an average particle size 58 nm, and SAED pattern confirms the single crystalline hexagonal structure of MoBiGaSe5 thin films. EDS confirmed the presence of Mo, Bi, Ga and Se elements and XPS confirms Mo4+, Bi3+, Ga3+ and Se2− oxidation states. The AFM images were in good agreement with SEM images. Asdeposited and annealed MoBiGaSe5 thin film show semiconducting behavior with p-type conductivity. The PEC performance was studied, and it showed efficiency (ɳ) 0.004 and 0.097% of asdeposited and vacuum annealed MoBiGaSe5 thin films respectively.



One of the authors, S. V. Patil would like to thank DST for the availability of instruments purchased under DST-FIST programme at Chandmal Tarachand Bora College, Shirur file no. SR/FST/College - 068/2017.


  1. 1.
    M.F. Ashby, P.J. Ferreira, D.L. Schodek, Nanomaterials, Nanotechnologies and Design (Elsevier, Amsterdam, 2011)Google Scholar
  2. 2.
    K.S. Han, J.H. Shin, H. Lee, Enhanced transmittance of glass plates for solar cells using nano-imprint lithography. Sol. Energy Mater. Sol. Cells 94, 583–587 (2009)CrossRefGoogle Scholar
  3. 3.
    H. Ouyang, G. Li, C. Li, J. Huang, J. Fei, J. Lu, Microstructure and ablation properties of C/C-Zr-Si-O composites prepared by carbothermal reduction of hydrothermal co-deposited oxides. Mater. Des. 159, 145–154 (2018)CrossRefGoogle Scholar
  4. 4.
    M. Harati, J. Jia, K. Giffard, K. Pellarin, C. Hewson, D.A. Love, W.M. Lau, Z. Ding, One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells. Phys. Chem. Chem. Phys. 12, 15282–15290 (2010)CrossRefGoogle Scholar
  5. 5.
    K. Ramasamy, M.A. Malik, P. O’Brien, Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem. Commun. 48, 5703–5714 (2012)CrossRefGoogle Scholar
  6. 6.
    T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, H. Katagiri, 6% Efficiency Cu2ZnSnS4 based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 22, 4021–4024 (2012)CrossRefGoogle Scholar
  7. 7.
    C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, Y. Liu, Y. Lai, J. Li, Y. Liu, Synthesis and characterizations of quaternary Cu2FeSnS4 nanocrystals. Chem. Commun. 48, 2603–2605 (2012)CrossRefGoogle Scholar
  8. 8.
    V.B. Ghanwat, S.S. Mali, R.M. Mane, P.S. Patil, C.K. Hong, P.N. Bhosale, Thermoelectric properties of nanocrystalline Cu3SbSe4 thin films deposited by a self-organized arrested precipitation technique. New J. Chem. 39, 5661–5668 (2015)CrossRefGoogle Scholar
  9. 9.
    K.V. Khot, V.B. Ghanwat, C.S. Bagade, S.S. Mali, R.R. Bhosale, A.S. Bagali, T.D. Dongale, P.N. Bhosale, Synthesis of SnS2 thin film via non vacuum arrested precipitation technique for solar cell application. Mater. Lett. 180, 23–26 (2016)CrossRefGoogle Scholar
  10. 10.
    C.H. Chen, W.C. Shih, C.Y. Chien, C.H. Hsu, Y.H. Wua, C.H. Lai, A promising sputtering route for one-step fabrication of chalcopyrite phase Cu(In, Ga)Se2 absorbers without extra Se supply. Sol. Energy Mater. Sol. Cells 103, 25–29 (2012)CrossRefGoogle Scholar
  11. 11.
    N.B. Pawar, S.S. Mali, S.D. Kharade, V.V. Kondalkar, V.B. Ghanwat, K.V. Khot, P.S. Patil, P.N. Bhosale, Microwave assisted novel MoBi2S5 nanoflowers: synthesis, characterization, photoelectrochemical performance. Solid State Sci. 61, 89–93 (2016)CrossRefGoogle Scholar
  12. 12.
    Q. Guo, G.M. Ford, W. Chang, B.C. Walker, E.A. Stach, H.W. Hillhouse, R. Agrawal, Fabrication of 7.2% efficient CZTSSe solar cells using CZTS nanocrystals. J. Am. Chem. Soc. 132, 17384–17386 (2010)CrossRefGoogle Scholar
  13. 13.
    J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, S.M. Huang, Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target. Prog. Photovolt. Res. 19, 160–164 (2011)CrossRefGoogle Scholar
  14. 14.
    S.S. Mohite, R.R. Kharade, S.S. Mali, D.G. Kanse, P.S. Patil, P.N. Bhosale, Low temperature synthesis of novel MoBiCuSe4 nanowire thin films by vacuum deposition method and their characterization. Res. J. chem. Environ. 15, 653–657 (2011)Google Scholar
  15. 15.
    M.P. Joshi, K.V. Khot, V.B. Ghanwat, S.D. Kharade, C.S. Bagade, N.D. Desai, S.S. Patil, P.N. Bhosale, Synthesis of tin sulphide thin film by simple arrested precipitation technique for solar cell application. AIP Conf. Proc. 1989, 020015 (2018)CrossRefGoogle Scholar
  16. 16.
    C.S. Bagade, V.B. Ghanwat, K.V. Khot, P.N. Bhosale, Efficient improvement of photoelectrochemical performance of CdSe thin film deposited via arrested precipitation technique. Mater. Lett. 164, 52–55 (2016)CrossRefGoogle Scholar
  17. 17.
    H. Sun, J. Deng, L. Qiu, X. Fang, H. Peng, Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 8, 1139–1159 (2015)CrossRefGoogle Scholar
  18. 18.
    N. Guijarro, M.S. Prevot, K. Sivula, Surface modification of semiconductor photoelectrodes. Phys. Chem. Chem. Phys. 17, 15655–15674 (2015)CrossRefGoogle Scholar
  19. 19.
    O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998)CrossRefGoogle Scholar
  20. 20.
    S.P. Patil, R.M. Mane, R.R. Kharade, S.S. Mali, P.N. Bhosale, Novel synthetic route for quaternary MoBiGaSe5 mixed metal chalcogenide (MMC) thin films. Dig. J. Nanomater. Biostruct. 7, 237–245 (2012)Google Scholar
  21. 21.
    V.B. Ghanwat, S.S. Mali, C.S. Bagade, K.V. Khot, N.D. Desai, C.K. Hong, P.N. Bhosale, Enhancement in thermoelectric performance of Cu3SbSe4 thin films by In(III) doping; synthesized by arrested precipitation technique. J. Mater. Sci.: Mater. Electron. 29, 8793–8800 (2018)Google Scholar
  22. 22.
    G. Zhang, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, K. Wu, Quintuple-layer epitaxy of thin films of topologicalinsulator Bi2Se3. Appl. Phys. Lett. 95, 053114–053118 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Rocks, V. Svrcek, P. Maguire, D. Mariotti, Understanding surface chemistry during MAPbI3 spray deposition and its effect on photovoltaic performance. J. Mater. Chem. C 5, 902–916 (2017)CrossRefGoogle Scholar
  24. 24.
    B. Canava, J. Vigneron, A. Etcheberry, J.F. Guillemoles, D. Lincot, High resolution XPS studies of Se chemistry of a Cu(In, Ga)Se2 surface. Appl. Surf. Sci. 202, 8–14 (2002)CrossRefGoogle Scholar
  25. 25.
    N.S. Patil, A.M. Sargar, S.R. Mane, P.N. Bhosale, Effect of Sb doping on thermoelectric properties of chemically deposited bismuth selenide films. Mater. Chem. Phys. 115, 47–51 (2009)CrossRefGoogle Scholar
  26. 26.
    S.V. Patil, R.M. Mane, N.B. Pawar, S.D. Kharade, S.S. Mali, P.S. Patil, G.L. Agawane, J.H. Kim, P.N. Bhosale, Opto-structural and electrical properties of chemically grown Ga doped MoBi2Se5 thin films. J. Mater. Sci.: Mater. Electron. 24, 4669–4676 (2013)Google Scholar
  27. 27.
    V.B. Ghanwat, S.S. Mali, C.S. Bagade, R.M. Mane, C.K. Hong, P.N. Bhosale, Thermoelectric properties of indium(III)-doped copper antimony selenide thin films deposited using a microwave-assisted technique. Energy Technol. 4, 835–842 (2016)CrossRefGoogle Scholar
  28. 28.
    L. Bertoluzzi, P.L. Varo, J.A. Tejada, J. Bisquert, Charge transfer processes at the semiconductor/electrolyte interface for solar fuel production: insight from impedance spectroscopy. J. Mater. Chem. A 4, 2873–2879 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. V. Patil
    • 1
    • 2
    Email author
  • V. B. Ghanwat
    • 3
  • R. Y. Mandhare
    • 2
    • 4
  • V. V. Kondalkar
    • 2
  • P. N. Bhosale
    • 2
  1. 1.Postgraduate Department of ChemistryC. T. Bora CollegeShirurIndia
  2. 2.Materials Research Laboratory, Department of ChemistryShivaji University KolhapurKolhapurIndia
  3. 3.Department of ChemistryYashavantrao Chavan Institute of ScienceSataraIndia
  4. 4.V. P. M’s B. N. Bandodkar College of ScienceThaneIndia

Personalised recommendations