Advertisement

Silver and epoxy binder-based printed electrodes and the effect of silver nanoparticles on stretchability

  • Suk Hun Hyun
  • Se-Hoon ParkEmail author
  • Sung-Hoon Choa
  • Hyun Jin Nam
  • Heejoon AhnEmail author
Article
  • 21 Downloads

Abstract

In recent years, there has been a lot of research on printed paste and ink composite electrode material made with metallic-based materials such as silver nanowires, silver nanoparticles, and flakes with epoxy-based binders. These stretchable electrode materials must exhibit metal-level conductivity and high interfacial adhesion that can withstand necking and deformation stress. To overcome several issues including the low adhesion properties found in silicone-based binders and the low heat resistance found in urethane-based binders, we synthesized a binder material with over 300% stretchability and high adhesive strength. This was done by modifying an epoxy to produce a binder that can be easily applied to various materials without special surface treatment technologies. In addition, we developed a printable, stretchable electrode material with high adhesive strength, high conductivity, and high stretchability by mixing three types of silver powders (flake, spherical micro-particle, and nanoparticle) with the modified epoxy binder. Results from electrode conductivity, stretchability, repetitive fatigue property, and residual strain analyses demonstrate that these properties are highly dependent on nanoparticle content and distribution. The electrode resistivities ranged from 8.5 × 10−5 to 2.5 × 10−5 Ω cm after heat curing at 170 °C and showed excellent stability at strain of over 140%.

Notes

Acknowledgements

This work was supported by the Ministry of Trade, Industry, and Energy (MOTIE, Korea) under the Industrial Technology Innovation Program “Development of 3D-Deformable Multilayered FPCB Devices” (Grant No. 10051162) and the Technology Development Program for Strategic Core Materials “Development of core technology on organic–inorganic composites for customized 3D printing with high-resolution (< 30 μm)” (Grant No. 10050709).

References

  1. 1.
    M. Gonzalez, F. Axisa, M.V. Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Microelectron. Reliab. 48, 825 (2008)CrossRefGoogle Scholar
  2. 2.
    P. Gutruf, S. Walia, M.N. Ali, S. Sriram, M. Bhaskaran, Appl. Phys. Lett. 104, 021908 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Ambrosi, J.G.S. Moo, M. Pumera, Adv. Funct. Mater. 26, 698 (2016)CrossRefGoogle Scholar
  4. 4.
    D.S. Gray, J. Tien, C.S. Chen, Adv. Mater. 16, 393 (2004)CrossRefGoogle Scholar
  5. 5.
    P. Mandlik, S.P. Lacour, J.W. Li, S.Y. Chou, S. Wagner, I.E.E.E. Electron, Device Lett. 27(8), 650 (2006)CrossRefGoogle Scholar
  6. 6.
    J.-Y. Sun, H.-R. Lee, K.H. Oh, Sci. Rep. 5, 13791 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Park, H. Kim, J.P. Youngblood, Nanotechnology. 19, 055705 (2008)CrossRefGoogle Scholar
  8. 8.
    S.J. Benight, C. Wang, J.B.H. Tok, Z. Bao, Prog. Polym. Sci. 38, 1961 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Guo, W. Fang, Y. Li, Y. Yang, C. Wang, X. Meng, Y. Chao, H. Yang, J. Mater. Sci.: Mater. Electron. 28, 16267 (2017)Google Scholar
  10. 10.
    Y. Yoon, K. Samanta, H. Lee, K. Lee, A.P. Tiwari, J. Lee, J. Yang, H. Lee, Sci. Rep. 5, 14177 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Merilampi, T. Bjorninen, V. Haukka, P. Ruuskanen, L. Ukkonen, L. Sydanheimo, Microelectron. Reliab. 50, 2001 (2010)CrossRefGoogle Scholar
  12. 12.
    P. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y.D. Suh, S.E. Lee, J. Yeo, S.S. Lee, D. Lee, S.H. Ko, Adv. Funct. Mater. 24, 5671 (2014)CrossRefGoogle Scholar
  13. 13.
    S.H. Kim, S. Jung, I.S. Yoon, C. Lee, Y. Oh, J.-M. Hong, Adv. Mater. 30, 1800109 (2018)CrossRefGoogle Scholar
  14. 14.
    A. Larmagnac, S. Eggenberger, H. Janossy, J. Vörös, Sci. Rep. 4, 7254 (2014)CrossRefGoogle Scholar
  15. 15.
    J.C. Lötters, W. Olthuis, P.H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997)CrossRefGoogle Scholar
  16. 16.
    L. Kersey, V. Ebacher, V. Bazargan, R. Wang, B. Stoeber, Lab Chip 9, 1002 (2009)CrossRefGoogle Scholar
  17. 17.
    G.-D. Sim, S. Won, S.-B. Lee, Appl. Phys. Lett. 101, 191907 (2012)CrossRefGoogle Scholar
  18. 18.
    H.-W. Lin, W.-H. Hwu, M.-D. Ger, J. Mater. Process. Technol. 206(1), 56 (2008)CrossRefGoogle Scholar
  19. 19.
    B.-G. Park, K.-H. Jung, S.-B. Jung, J. Alloys Compd. 699, 1186 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Jiang, K. Moon, Y. Li, C.P. Wong, Chem. Mater. 18, 2969 (2006)CrossRefGoogle Scholar
  21. 21.
    K.-Y. Chun, Y. Oh, J. Rho, J.-H. Ahn, Y.-J. Kim, H.R. Choi, S. Baik, Nat. Nanotechnol. 5, 853 (2010)CrossRefGoogle Scholar
  22. 22.
    K.-S. Moon, H. Dong, M. Radenka, P. Suresh, H. Andrew, Y. Li, C.P. Wong, J. Electron. Mater. 34(2), 168 (2005)CrossRefGoogle Scholar
  23. 23.
    H.-H. Lee, K.-S. Chou, Z.-W. Shih, Int. J. Adhes. Adhes. 25, 437 (2005)CrossRefGoogle Scholar
  24. 24.
    G.-D. Kim, H.-M. Nam, S. Yang, L.-S. Park, S.-Y. Nam, J. Korean Powder Metall. Inst. 24(6), 464 (2017)CrossRefGoogle Scholar
  25. 25.
    J.H. Sohn, L.Q. Pham, H.S. Kang, J.H. Park, B.C. Lee, Y.S. Kang, Radiat. Phys. Chem. 79, 1149 (2010)CrossRefGoogle Scholar
  26. 26.
    K.L. Chan, M. Mariatti, Z. Lockman, L.C. Sim, J. Appl. Polym. Sci. 121(6), 3145 (2011)CrossRefGoogle Scholar
  27. 27.
    N.B. Bell, C.B. DiAntonio, D.B. Dimos, J. Mater. Res. 17(9), 2423 (2002)CrossRefGoogle Scholar
  28. 28.
    D.I. Tee, M. Mariatti, A. Azizan, C.H. See, K.F. Chong, Compos. Sci. Technol. 67, 2584 (2007)CrossRefGoogle Scholar
  29. 29.
    T. Araki, M. Nogi, K. Suganuma, M. Kogure, O. Kirihara, I.E.E.E. Electron, Device Lett. 32(10), 1424 (2011)CrossRefGoogle Scholar
  30. 30.
    S.-Y. Nam, B.-S. Kwon, H.-J. Nam, K.-W. Nam, H.-Z. Park, J. Korean Soc. Power Syst. Eng. 22(1), 64 (2018)CrossRefGoogle Scholar
  31. 31.
    S.-M. Yi, I.-S. Choi, B.-J. Kim, Y.-C. Joo, Electron. Mater. Lett. 14, 387 (2018)CrossRefGoogle Scholar
  32. 32.
    K. Suganuma, S. Sakamoto, N. Kagami, D. Wakuda, K.-S. Kim, M. Nogi, Microelectron. Reliab. 52, 375 (2012)CrossRefGoogle Scholar
  33. 33.
    P.J. Withers, P.J. Webster, Strain 37(1), 19 (2001)CrossRefGoogle Scholar
  34. 34.
    P.J. Withers, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 17(4), 355 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ICT device Packaging Research CenterKorea Electronics Technology Institute (KETI)Seongnam-siKorea
  2. 2.Graduate School of Nano IT Design FusionSeoul National University of Science and TechnologySeoulKorea
  3. 3.Department of Manufacturing Systems and Design EngineeringSeoul National University of Science and TechnologySeoulKorea
  4. 4.Department of Organic and Nano EngineeringHanyang UniversitySeoulKorea

Personalised recommendations