Impact of Dy2O3 nanoparticles additions on the properties of porous YBCO ceramics

  • M. A. Almessiere
  • Y. SlimaniEmail author
  • E. Hannachi
  • R. Algarni
  • F. Ben Azzouz


In this work, we report the effects of dysprosium oxide (Dy2O3) magnetic nanoparticles inclusion on superconducting characteristics and flux pinning of YB2Cu3O7−δ (for brevity YBCO) compound. Using the solid-state reaction route, series of YBa2Cu3O7−δ/(Dy2O3)x were produced by adding up to 0.5 wt% Dy2O3. The crystal structure, morphology, electrical and magnetic properties were examined using X-ray diffraction, scanning electron microscopy, electrical resistivity and physical properties measurement system (PPMS), respectively. The orthorhombicity was preserved with Dy2O3 addition. The electrical resistivity dependence with the temperature (()) revealed the manifestation of superconducting transition in all prepared samples. By increasing x up to 0.2 wt%, an increase of critical current density \(\left( {J_{c} } \right)\) was achieved. The flux pinning ability and the dominant pinning mechanisms in YBa2Cu3O7−δ/(Dy2O3)x composites were checked and discussed.



The authors highly acknowledged the Institute for Research & Medical Consultations (Projects Application Nos. 2017-IRMC-S-3 and 2018-IRMC-S-2) and the Deanship for Scientific Research (Projects Application No. 2018-209-IRMC) of Imam Abdulrahman Bin Faisal University (Saudi Arabia) for supporting this study.


  1. 1.
    I. Nettleship, Applications of porous ceramics. Key Eng. Mater. 122, 305 (1996)CrossRefGoogle Scholar
  2. 2.
    J. Banhart, J. Baumeister, M. Weber, Metal foams near commercialization. Metal Powder Rep. 53, 38 (1997)Google Scholar
  3. 3.
    K.A. Shaykhutdinov, D.A. Balaev, S.I. Popkov, A.D. Vasilyev, O.N. Martyanov, M.I. Petrov, Thermally activated dissipation in a novel foamed Bi-based oxide superconductor in magnetic fields״. Supercond. Sci. Technol. 20, 491 (2007)CrossRefGoogle Scholar
  4. 4.
    K.D. Bagarinao, H. Yamasaki, Y. Nakagawa, K. Endo, Pore formation in YBCO films deposited by a large-area pulsed laser deposition system. Supercond. Sci. Technol. 17, 1253 (2004)CrossRefGoogle Scholar
  5. 5.
    O. Castano, A. Cavallaro, A. Palau, J.C. Gonzalez, M. Rossell, T. Puig, F. Sandiumenge, N. Mestres, S. Pinol, A. Pomar, X. Obradors, High quality YBa2Cu3O7 thin films grown by trifluoroacetates metalorganic deposition. Supercond. Sci. Technol. 16, 45 (2003)CrossRefGoogle Scholar
  6. 6.
    K.D. Bagarinao, H. Yamasaki, J.C. Nie, M. Murugesan, O. Haruhiko, N. Yoshihiko, Control of porosity and composition in large-area YBCO films to achieve micrometer thickness and High Jc on sapphire substrates. IEEE Appl. Supercond. 15, 2962 (2005)CrossRefGoogle Scholar
  7. 7.
    E.S. Reddy, G.J. Schmitz, Superconducting foams. Supercond. Sci. Technol. 15, L21 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Suasmoro, M.F. Khalfi, A. Khalfi, G. Trolliard, D.S. Smith, J.P. Bonnet, Microstructural and electrical characterization of bulk YBa2Cu3O7-d ceramics. Ceram. Int. 38, 29 (2012)CrossRefGoogle Scholar
  9. 9.
    K.D. Bagarinao, H. Yamasaki, J.C. Nie, Y. Nakagawa, Thickness dependence of Jc for YBCO thin films prepared by large-area pulsed laser deposition on CeO2-buffered sapphire substrates. Supercond. Sci. Technol. 18, 667 (2005)CrossRefGoogle Scholar
  10. 10.
    R. Tournier, E. Beaugnon, O. Belmont, X. Chaud, D. Bourgault, D. Isfort, L. Porcar, P. Tixador, Processing of large YBa2Cu3O7−x single domains for current limiting applications. Supercond. Sci. Technol. 13, 886 (2000)CrossRefGoogle Scholar
  11. 11.
    R.L.S. Emergo, J.Z. Wua, Thickness dependence of superconducting critical current density in vicinal YBa2Cu3O7−δ thick films. Appl. Phys. Lett. 85, 618 (2004)CrossRefGoogle Scholar
  12. 12.
    C.H. Cheng, Y. Zhao, Repair of grain boundary by preferential-doping in YBa2Cu3O7−y. Physica C 463, 174 (2007)CrossRefGoogle Scholar
  13. 13.
    N. Long, N. Strickland, B. Chapman, N. Ross, J. Xia, X. Li, W. Zhang, T. Kodenkandath, Y. Huang, M. Rupich, Enhanced in-field critical currents of YBCO second-generation (2G) wire by Dy additions. Supercond. Sci. Technol. 18, S405 (2005)CrossRefGoogle Scholar
  14. 14.
    M.B. Turkoz, S. Nezir, C. Terzioglu, A. Varilci, G. Yildirim, Investigation of Lu effect on YBa2Cu3O7-d superconducting compounds. J. Mater. Sci. 24, 896 (2013)Google Scholar
  15. 15.
    S. Xu, X.S. Wu, G.B. Ma, M. Liu, Effects of Gd doping in YBa2Cu3O7-delta on the critical current density. Int. J. Mod. Phys. B 21, 3216 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Öztürk, M. Doğan, I. Düzgün, S. Çelebi, The effect of Dy doping on the magnetic behavior of YBCO superconductors. J. Supercond. Nov. Magn 29, 1787 (2016)CrossRefGoogle Scholar
  17. 17.
    T. Koutzarova, I. Nedkov, M. Ausloos, R. Cloots, T. Midlarz, M. Nogues, The influence of the polycrystalline state and partial Dy substitution on the superconducting properties of YBCO. Phys. stat. sol. 191, 235 (2002)CrossRefGoogle Scholar
  18. 18.
    D.M. Gokhfeld, D.A. Balaev, I.S. Yakimov, M.I. Petrov, S.V. Semenova, Tuning the peak effect in the Y1−xNdxBa2Cu3O7−δ compound. Ceram. Int. 43, 9985 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Xu, A.P. Yu, Y.N. Gu, X.S. Wu, Effect of Yb2O3 additives on structure and transport properties of YBa2Cu3O7–δ. J. Rare Earths 28, 434 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Xu, X.S. Wu, G.B. Ma, Z.H. Wang, J. Gao, Effects of Gd2O3 addition in YBa2Cu3O7−δ on the critical current density. J. Appl. Phys. 103, 07C714 (2008)CrossRefGoogle Scholar
  21. 21.
    S. Xu, Y.N. Gu, Effect of Ho2O3 additives on YBa2Cu3O7−δ properties. Adv. Sci. Lett. 5, 310 (2012)CrossRefGoogle Scholar
  22. 22.
    Y. Slimani, E. Hannachi, A. Ekicibil, M.A. Almessiere, F. Ben Azzouz, Investigation of the impact of nano-sized wires and particles TiO2 onY-123 superconductor performance. J. Alloys Compd. 781, 664 (2019)CrossRefGoogle Scholar
  23. 23.
    M.K. Ben Salem, E. Hannachi, Y. Slimani, A. Hamrita, M. Zouaoui, L. Bessais, M. Ben Salem, F. Ben Azzouz, SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy. Ceram. Int. 40, 4953–4962 (2014)CrossRefGoogle Scholar
  24. 24.
    A. Ramli, A.H. Shaari, H. Baqiah, C.S. Kean, M.M. Awang Kechik, Z.A. Talib, Role of Nd2O3 nanoparticles addition on microstructural and superconducting properties of YBa2Cu3O7–δ ceramics. J. Rare Earths 34, 895 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Berger, D. Ariosa, R. Gaal, A. Saleh, G. Margaritondo, S.F. Lee, S.H. Huang, H.W. Chang, T.M. Chuang, Y. Liou, Y.D. Yao, Y. Hwu, Coexistence of ferromagnetism and high-temperature superconductivity in Dy-Doped BiPbSrCaCuO. Surf. Rev. Lett. 9, 1109 (2002)CrossRefGoogle Scholar
  26. 26.
    A. Zelati, A. Amirabadizadeh, A. Kompany, H. Salamati, J.E. Sonier, Critical current density and intergranular coupling study of the dysprosium oxide nanoparticle added Bi1.6Pb0.4Sr2Ca2Cu3Oy superconductor. J. Supercond. Nov. Magn. 27, 2185 (2014)CrossRefGoogle Scholar
  27. 27.
    P. Benzi, E. Bottizzo, N. Rizzi, Oxygen determination from cell dimensions in YBCO superconductors. J. Cryst. Growth 269, 625 (2004)CrossRefGoogle Scholar
  28. 28.
    N.M. Hapipi, S.K. Chen, A.H. Shaari, M.M.A. Kechik, K.B. Tan, K.P. Lim, Superconductivity of Y2O3 and BaZrO3 nanoparticles co-added YBa2Cu3O7−δ bulks prepared using co-precipitation method. J. Mater. Sci. 29, 18684–18692 (2018)Google Scholar
  29. 29.
    Y. Slimani, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45, 2621 (2019)CrossRefGoogle Scholar
  30. 30.
    E. Hannachi, Y. Slimani, M.K. Ben Salem, A. Hamrita, D.K. Mani, M. Zouaoui, M. Ben Salem, F. Ben Azzouz, Magneto-conductivity fluctuation in YBCO prepared by sintering of ball-milled precursor powder. Mater. Chem. Phys. 159, 185–193 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Kaur, R. Srinivasan, G.K. Mehta, D. Kanjilal, R. Pinto, S.B. Ogale, S. Mohan, V. Ganesan, Effect of disorder on the exponent in the coherence region in high temperature superconductors. Physica C 443, 61 (2006)CrossRefGoogle Scholar
  32. 32.
    A. Palau, T. Puig, X. Obradors, Ch. Jooss, Simultaneous determination of grain and grain-boundary critical currents in YBa2Cu3O7-coated conductors by magnetic measurements. Phys. Rev. B 75, 054517 (2007)CrossRefGoogle Scholar
  33. 33.
    C.P. Bean, Magnetization of hard superconductors. Phys. Rev. Lett. 8, 250 (1962)CrossRefGoogle Scholar
  34. 34.
    A.C.A. Nur-Syazwani, R. Abd-Shukor, Effect of ferrimagnetic Cr2S3 on AC susceptibility and superconducting properties of YBa2Cu3O7−δ. J. Supercond. Nov. Magn. 32, 863–868 (2019)CrossRefGoogle Scholar
  35. 35.
    B. Sahoo, S.R. Mohapatra, A.K. Singh, D. Samal, D. Behera, Effects of CNTs blending on the superconducting parameters of YBCO superconductor. Ceram. Int. 45, 7709 (2019)CrossRefGoogle Scholar
  36. 36.
    C. Tarantini, H.U. Aebersold, C. Bernini, V. Braccini, C. Ferdeghini, U. Gambardella, E. Lehmann, P. Manfrinetti, A. Palenzona, I. Pallecchi, M. Vignolo, M. Putti, Neutron irradiation on MgB2. Physica C 463–465, 211 (2007)CrossRefGoogle Scholar
  37. 37.
    T. Higuchi, S.I. Yoo, M. Murakami, Comparative study of critical current densities and flux pinning among a flux-grown NdBa2Cu3Oy single crystal, melt-textured Nd–Ba–Cu–O, and Y-Ba–Cu–O bulks. Phys. Rev. B 59, 1514 (1999)CrossRefGoogle Scholar
  38. 38.
    D. Dew-Hughes, Flux pinning mechanisms in type II superconductors. Philos. Mag. 30, 293 (1974)CrossRefGoogle Scholar
  39. 39.
    Y. Slimani, M.A. Almessiere, E. Hannachi, M. Mumtaz, A. Manikandan, A. Baykal, F. Ben Azzouz, Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor. Ceram. Int. 45, 6828 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biophysics, Institute for Research and Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Department of Physics, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  3. 3.Laboratory of Physics of Materials - Structures and Properties, Department of Physics, Faculty of Sciences of BizerteUniversity of CarthageZarzounaTunisia
  4. 4.Basic and Applied Scientific Research CenterImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations