Advertisement

Magnetic- and electric-dipole radiative rates in multifunctional Ba5Zn4Y8O21:Tb3+ nanorods

  • Jyoti Dalal
  • Mandeep Dalal
  • Sushma Devi
  • Anju Hooda
  • Avni Khatkar
  • Rajesh K. Malik
  • V. B. Taxak
  • S. P. KhatkarEmail author
Article
  • 37 Downloads

Abstract

Novel multifunctional Ba5Zn4Y8O21:Tb3+ nanorods, fabricated via solution combustion route, have been found to go in the tetragonal system with the I4/m (87) crystallographic space group. The diffuse reflectance (DR) studies unveiled a band-gap of 3.77 eV for Ba5Zn4Y7.84Tb0.16O21 (most emitting composition). The ultra-violet (UV) excitation at a wavelength of 290 nm for all Ba5Zn4Y8O21:Tb3+ samples produced the characteristics emission peaks corresponding to 5D4 → 7F6,5,4,3 transitions in Tb3+ (used to obtain Judd–Ofelt parameters). The critical distance of energy transfer between neighboring Tb3+ ions was found to be 18.62 Å, and helped to shortlist the right mechanism responsible concentration quenching phenomena (dipole–quadrupole). The in-depth analysis of photoluminescence (PL) decay curves and emission spectra of Ba5Zn4Y8O21:Tb3+ nanorods delivered the value of radiative lifetime (1.1934 ms) and total radiative rates from 5D4 state in Tb3+. The radiative probabilities of electric-dipole transitions (extracted from total radiative rates i.e. magnetic-dipole + electric-dipole) were used to calculate the Judd–Ofelt intensity parameters (Ω2 = 3.98 × 10−20, Ω4 = 1.76 × 10−20 and Ω6 = 0.28 × 10−20 cm2). The quantum efficiency of 5D4 state in Ba5Zn4Y7.84Tb0.16O21 phosphor was calculated to be 79% with pure green emission, signifying their potential use in display and lighting devices. As a final point, the high magnitude of emission cross-section of 5D4 → 7F5 (14.84 × 10−20 cm2) transition also claims their promising candidature as a good laser crystal.

Notes

Acknowledgements

One of the authors, Ms. Jyoti Dalal gratefully acknowledges the financial support in the form of senior research fellowship (SRF) from Council of Scientific and Industrial Research (CSIR), New Delhi, India (Award No: 09/382(0180)/2016-EMR-I).

References

  1. 1.
    J. Li, J.G. Li, S. Liu, X. Li, X. Sun, Y. Sakka, J. Mater. Chem. C 1, 7614–7622 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, Z. Lian, X. Su, Z. Yang, S. Pan, Q. Yan, F. Zhang, New J. Chem. 39, 4328–4333 (2015)CrossRefGoogle Scholar
  3. 3.
    E. Pavitra, G.S. Raju, Y.H. Ko, J.S. Yu, Phys. Chem. Chem. Phys. 14, 11296–11307 (2012)CrossRefGoogle Scholar
  4. 4.
    R. Cao, G. Quan, Z. Shi, Q. Gou, T. Chen, Z. Hu, Z. Luo, J. Mater. Sci.: Mater. Electron. 29, 5287–5292 (2018)Google Scholar
  5. 5.
    B. Ma, X. Ma, T. Xu, K. Su, Q. Zhang, RSC Adv. 8, 14164–14170 (2018)CrossRefGoogle Scholar
  6. 6.
    D.A. Hakeem, J.W. Pi, S.W. Kim, K. Park, Inorg. Chem. Front. 5, 1336–1345 (2018)CrossRefGoogle Scholar
  7. 7.
    D. Wu, W. Xiao, L. Zhang, X. Zhang, Z. Hao, G.-H. Pan, Y. Luo, J. Zhang, J. Mater. Chem. C 5, 11910–11919 (2017)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, J. Silver, R.-J. Xie, J. Zhang, H. Xu, H. Shao, J. Jiang, H. Jiang, J. Mater. Chem. C 5, 12365–12377 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Dalal, V.B. Taxak, J. Dalal, A. Khatkar, S. Chahar, R. Devi, S.P. Khatkar, J. Alloys Compd. 698, 662–672 (2017)CrossRefGoogle Scholar
  10. 10.
    D.K. Sardar, K.L. Nash, R.M. Yow, J.B. Gruber, U.V. Valiev, E.P. Kokanyan, J. Appl. Phys. 100, 083108 (2006)CrossRefGoogle Scholar
  11. 11.
    B.M. Walsh, Judd-Ofelt theory: principles and practices, in Advances in Spectroscopy for Lasers and Sensing (Springer, New York, 2006), pp. 403–433CrossRefGoogle Scholar
  12. 12.
    B.R. Judd, Phys. Rev. 127, 750–761 (1962)CrossRefGoogle Scholar
  13. 13.
    G.S. Ofelt, J. Chem. Phys. 37, 511–520 (1962)CrossRefGoogle Scholar
  14. 14.
    B. Tian, B. Chen, Y. Tian, X. Li, J. Zhang, J. Sun, H. Zhong, L. Cheng, S. Fu, H. Zhong, Y. Wang, X. Zhang, H. Xia, R. Hua, J. Mater. Chem. C 1, 2338–2344 (2013)CrossRefGoogle Scholar
  15. 15.
    W. Luo, J. Liao, R. Li, X. Chen, Phys. Chem. Chem. Phys. 12, 3276–3282 (2010)CrossRefGoogle Scholar
  16. 16.
    Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, H. Yu, J. Appl. Phys. 109, 053511–053516 (2011)CrossRefGoogle Scholar
  17. 17.
    B. Liu, J. Shi, Q. Wang, H. Tang, J. Liu, H. Zhao, D. Li, J. Liu, X. Xu, Z. Wang, J. Xu, Spectrochim. Acta A 200, 58–62 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Devi, A. Khatkar, V.B. Taxak, M. Dalal, S. Chahar, J. Dalal, S.P. Khatkar, J. Alloys Compd. 767, 409–418 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Dahiya, M. Dalal, A. Siwach, M. Dahiya, D. Kumar, J. Mater. Sci.: Mater. Electron. 29, 20750–20758 (2018)Google Scholar
  20. 20.
    Y. Fu, Y. Shi, N. Zhang, Y. Tian, M. Xing, X. Luo, Mater. Res. Bull. 84, 346–349 (2016)CrossRefGoogle Scholar
  21. 21.
    K. Patil, Curr. Opin. Solid State Mater. Sci. 2, 158–165 (1997)CrossRefGoogle Scholar
  22. 22.
    B.H. Toby, J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  23. 23.
    A.C. Larson, R.B. Von Dreele, Los Alamos National Laboratory Report LAUR, 86-748 (1994)Google Scholar
  24. 24.
    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys.: Condens. Matter 14, 2717–2744 (2002)Google Scholar
  25. 25.
    W. Wong-Ng, J.A. Kaduk, J. Dillingham, Powder Diffr. 16, 131–143 (2012)CrossRefGoogle Scholar
  26. 26.
    J.C. Boyer, F. Vetrone, J.A. Capobianco, A. Speghini, M. Bettinelli, J. Phys. Chem. B 108, 20137–20143 (2004)CrossRefGoogle Scholar
  27. 27.
    D. Deng, H. Yu, Y. Li, Y. Hua, G. Jia, S. Zhao, H. Wang, L. Huang, Y. Li, C. Li, S. Xu, J. Mater. Chem. C 1, 3194–3199 (2013)CrossRefGoogle Scholar
  28. 28.
    G. Blasse, Phys. Lett. A 28, 444–445 (1968)CrossRefGoogle Scholar
  29. 29.
    D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063–1070 (1954)CrossRefGoogle Scholar
  30. 30.
    L.G. Van Uitert, J. Lumin. 4, 1–7 (1971)CrossRefGoogle Scholar
  31. 31.
    Y. Tian, B. Chen, B. Tian, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, Q. Meng, J. Alloys Compd. 509, 6096–6101 (2011)CrossRefGoogle Scholar
  32. 32.
    H. Qian, J. Zhang, L. Yin, RSC Adv. 3, 9029–9034 (2013)CrossRefGoogle Scholar
  33. 33.
    G. Zatryb, A. Podhorodecki, J. Serafińczuk, M. Motyka, M. Banski, J. Misiewicz, N.V. Gaponenko, Opt. Mater. 35, 2090–2094 (2013)CrossRefGoogle Scholar
  34. 34.
    X. Huang, Opt. Mater. 50, 81–86 (2015)CrossRefGoogle Scholar
  35. 35.
    F. Auzel, J. Lumin. 100, 125–130 (2002)CrossRefGoogle Scholar
  36. 36.
    C.A. Kodaira, H.F. Brito, M.C.F.C. Felinto, J. Solid State Chem. 171, 401–407 (2003)CrossRefGoogle Scholar
  37. 37.
    M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542–1548 (2002)CrossRefGoogle Scholar
  38. 38.
    C. Görller-Walrand, L. Fluyt, A. Ceulemans, W.T. Carnall, J. Chem. Phys. 95, 3099–3106 (1991)CrossRefGoogle Scholar
  39. 39.
    C.M. Dodson, R. Zia, Phys. Rev. B 86, 123102 (2012)CrossRefGoogle Scholar
  40. 40.
    A. Aebischer, F. Gumy, J.C. Bunzli, Phys. Chem. Chem. Phys. 11, 1346–1353 (2009)CrossRefGoogle Scholar
  41. 41.
    S. Kuboniwa, T. Hoshina, J. Phys. Soc. Jpn. 32, 1059–1068 (1972)CrossRefGoogle Scholar
  42. 42.
    X. Zhang, L. Zhou, Q. Pang, M. Gong, RSC Adv. 5, 54622–54628 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jyoti Dalal
    • 1
  • Mandeep Dalal
    • 1
  • Sushma Devi
    • 1
  • Anju Hooda
    • 1
  • Avni Khatkar
    • 2
  • Rajesh K. Malik
    • 1
  • V. B. Taxak
    • 1
  • S. P. Khatkar
    • 1
    Email author
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.Department of Electronics and Communication (UIET)Maharshi Dayanand UniversityRohtakIndia

Personalised recommendations