Mechanism study of Zn/Sn ratio on the MoSe2 formation in Zn-rich Cu2ZnSnSe4 absorber layer

  • Yi-Cheng LinEmail author
  • Ya-Ru Hsu


Controlling the thickness of the interfacial MoSe2 layer in Cu2ZnSnSe4 (CZTS) thin film solar cells can have a profound impact on device performance. The Zn/Sn ratio in the absorber layer of CZTS solar cells significantly affects the thickness of MoSe2 after selenization; however, the underlying mechanism remains unknown. In this study, we employed a fast-cooling selenization system to study the phase transformation and analyzed the back side of the CZTS absorber layer to characterize the mechanism by which Zn/Sn ratio affects the thickness of the MoSe2 absorber layer. Experiments revealed the formation of various metal-selenide phases at the bottom of the CZTS absorber layer during selenization. At temperatures below 400 °C, this mainly involves Sn- and CuSn-selenides; above 450 °C, this mainly involves Cu- and Zn- selenides. Since MoSe2 grows significantly above 450 °C, Cu- and Zn-selenides are the main reasons for reducing the thickness of MoSe2. The fact that MoSe2 growth generally occurs above 450 °C means that a higher Zn/Sn ratio leads to the formation of more Zn-selenides, such that there is less Se available for the formation of MoSe2, resulting in a thinner layer.



  1. 1.
    S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T.K. Todorov, D.B. Mitzi, Low band gap liquid-processed CZTS solar cell with 10.1% efficiency. Energy Environ. Sci. 5, 7060–7065 (2012)CrossRefGoogle Scholar
  2. 2.
    W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Chen, X.G. Gong, A. Walsh, S.H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010)CrossRefGoogle Scholar
  4. 4.
    D. Han, Y. Sun, J. Bang, Y. Zhang, H. Sun, X. Li, S. Zhang, Deep electron traps and origin of p-type conductivity in the earth-abundant solar-cell material Cu2ZnSnS4. Phys. Rev. B 87, 155206 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt, In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications. Appl. Phys. Lett. 98, 181905 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Zhou, T.B. Song, W.C. Hsu, S. Luo, S. Ye, H.S. Duan, C.J. Hsu, W. Yang, Y. Yang, Rational defect passivation of Cu2ZnSn(S, Se)4 photovoltaics with solution-processed Cu2ZnSnS4: Na nanocrystals. J. Am. Chem. Soc. 135, 15998–16001 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Fairbrother, X. Fontané, V. Izquierdo-Roca, M. Espíndola-Rodríguez, S. López-Marino, M. Placidi et al., On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks. Sol. Energy Mater. Sol. Cells 112, 97–105 (2013)CrossRefGoogle Scholar
  8. 8.
    D.H. Son, D.H. Kim, S.N. Park, K.J. Yang, D. Nam, H. Cheong, J.K. Kang, Growth and device characteristics of CZTSSe thin-film solar cells with 8.03% efficiency. Chem. Mater. 27, 5180–5188 (2015)CrossRefGoogle Scholar
  9. 9.
    Q. Cao, O. Gunawan, M. Copel, K.B. Reuter, S.J. Chey, V.R. Deline, D.B. Mitzi, Defects in Cu(In, Ga)Se2 chalcopyrite semiconductors: a comparative study of material properties, defect states, and photovoltaic performance. Adv. Energy Mater. 1, 845–853 (2011)CrossRefGoogle Scholar
  10. 10.
    P.M.P. Salomé, V. Fjallstrom, A. Hultqvist, P. Szaniawski, U. Zimmermann, M. Edoff, The effect of Mo back contact ageing on Cu(In, Ga)Se2 thin-film solar cells. Prog. Photovolt 22, 83–89 (2014)CrossRefGoogle Scholar
  11. 11.
    S.J. Ahn, K.H. Kim, J.H. Yun, K.H. Yoon, Effects of selenization conditions on densification of Cu(In, Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles. J. Appl. Phys. 105, 113533 (2009)CrossRefGoogle Scholar
  12. 12.
    A. Polizzotti, I.L. Repins, R. Noufi, S.H. Wei, D.B. Mitzi, The state and future prospects of kesterite photovoltaics. Energy Environ. Sci. 6, 3171–3182 (2013)CrossRefGoogle Scholar
  13. 13.
    Y.C. Lin, C.M. Lai, H.R. Hsu, Impact of sodium on the secondary phases and current pathway in Cu2(Zn, Sn)Se4 thin film solar cell. Mater. Chem. Phys. 192, 131–137 (2017)CrossRefGoogle Scholar
  14. 14.
    L. Yao, J. Ao, M.J. Jeng, J. Bi, S. Gao, G. Sun, Q. He, Z. Zhou, Y. Sun, L.B. Chang, Effect of Sn content in a CuSnZn metal precursor on formation of MoSe2 film during selenization in SetSnSe vapor. Materials 9, 241 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.C. Lin, L.C. Wang, K.T. Liu, Y.R. Syu, H.R. Hsu, A comparative investigation of secondary phases and MoSe2 in Cu2ZnSnSe4 solar cells: effect of Zn/Sn ratio ratio. J. Alloys Compd. 743, 249–257 (2018)CrossRefGoogle Scholar
  16. 16.
    F.Y. Liu, F.Q. Zeng, N. Song, L.X. Jiang, Z. Han, Z.H. Su, C. Yan, X.M. Wen, X.J. Hao, Y.X. Liu, Kesterite Cu2ZnSn(S, Se)4 solar cells with beyond 8% efficiency by a sol-gel and selenization process. ACS Appl. Mater. Interfaces 7, 14376–14383 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Parkg, D. Nam, S. Jung, S. An, J. Gwak, K. Yoon, J.H. Yun, H. Cheong, Optical characterization of Cu2ZnSnSe4 grown by thermal co-evaporation. Thin Solid Films 519, 7386 (2011)CrossRefGoogle Scholar
  18. 18.
    S.W. Shin, S.M. Pawar, C.Y. Park, J.H. Yun, J.H. Moo, J.H. Kim, J.Y. Lee, Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Sol. Energy Mater. Sol. Cells 95, 3202 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Grossberg, J. Krustok, J. Raudoja, K. Timmo, M. Altosaar, T. Raadik, Photoluminescence and Raman study of Cu2ZnSn(SexS1-x)4 monograins for photovoltaic applications. Thin Solid Films 519, 7403–7406 (2011)CrossRefGoogle Scholar
  20. 20.
    G. Perna, M. Lastella, M. Ambrico, V. Capozzi, Temperature dependence of the optical properties of ZnSe films deposited on quartz substrate. Appl. Phys. A 83, 127–130 (2006)CrossRefGoogle Scholar
  21. 21.
    R.A. Wibowo, S.M. Hyesun, Y.A. Hoelzing, R.H. Peter, J. Wellmann, Formation of Cu2SnSe3 from stacked elemental layers investigated by combined in situ X-ray diffraction and differential scanning calorimetry techniques. J. Alloys Compd. 588, 254–258 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Zhao, Q. Fan, Q. Tian, Z.J. Zhou, Y. Meng, D.X. Kou, W.H. Zhouab, S. Wu, Eliminating fine-grained layers in Cu(In, Ga)(S, Se)2 thin films for solution-processed high efficiency solar cells. J. Mater. Chem. A 4, 13476–13481 (2016)CrossRefGoogle Scholar
  23. 23.
    J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C.P. Björkman, Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011)CrossRefGoogle Scholar
  24. 24.
    T. Liu, Z. Jin, J. Li, J. Wang, D. Wang, J. Lai, H. Du, Monodispersed octahedral-shaped pyrite CuSe2 particles by polyol solution chemical synthesis. CrystEngComm 15, 8903–8906 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechatronics EngineeringNational Changhua University of EducationChanghuaTaiwan

Personalised recommendations