Advertisement

One-step fabrication of InxGa1−xSb nanowires by vapor transport method

  • Tianxiong Wang
  • Xianquan MengEmail author
Article

Abstract

We try to synthesize InxGa1−xSb nanowires on silicon (100) substrate using InSb and GaSb as source materials and we succeeded. Au film was used as catalysts. The experiment is simple and repeatable. The diameter of the grown nanowires is 60–200 nm and up to 10 microns in length. The grown nanowires have good crystallinity. Due to the doping of indium, we found that the XRD peaks of nanowires were shifted. We have fabricated fully nanostructured device using ultra-long Ag nanowires as electrodes for the I–V characteristic study, and found that the device has photoresponse characteristics and the I–V characteristic curve was asymmetric, we explain that it was due to the asymmetry of this fully nanostructured devices.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant (Nos. U1631110). The authors would like to acknowledge the Center for Electron Microscopy at Wuhan University for their substantial supports to TEM work.

References

  1. 1.
    X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).  https://doi.org/10.1038/35051047 CrossRefGoogle Scholar
  2. 2.
    J. Du, J. Xing, C. Ge, H. Liu, H. Gao, Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD. J. Phys. D (2016).  https://doi.org/10.1088/0022-3727/49/42/425105 Google Scholar
  3. 3.
    H. Chen, X. Sun, K.W.C. Lai, M. Meyyappan, X. Ning, Infrared detection using an InSb nanowire. IEEE Nano-technol. Mater. Devices Conf. (2009).  https://doi.org/10.1109/nmdc.2009.5167558 Google Scholar
  4. 4.
    A. Aissat, F. Benyettou, J.P. Vilcot, InSb/GaAs quantum dot solar cell. IEEE Renew. Sustain. Energy Conf. (2017).  https://doi.org/10.1109/irsec.2016.7984053 Google Scholar
  5. 5.
    C.H. Kuo, J.M. Wu, S.J. Lin, W.C. Chang, High sensitivity of middle-wavelength infrared photodetectors based on an individ-ual InSb nanowire. Nanoscale Res. Lett. 8, 1–8 (2013).  https://doi.org/10.1186/1556-276x-8-327 CrossRefGoogle Scholar
  6. 6.
    R.B. Yang, J. Bachmann, E. Pippel, A. Berger, Jörg Woltersdorf, Ulrich Gösele et al., Pulsed vapor-liquid-solid growth of antimony selenide and antimony sulfide nanowires. Adv. Mater. 21(31), 3170–3174 (2010).  https://doi.org/10.1002/adma.200803436 CrossRefGoogle Scholar
  7. 7.
    H.C. Ho, Z.Y. Gao, H.K. Lin, P.C. Chiu, Y.M. Hsin, J.I. Chyi, Device characteristics of InGaSb/AlSb high-hole-mobility FETS. IEEE Electron Device Lett. 33(7), 964–966 (2012).  https://doi.org/10.1109/LED.2012.2193656 CrossRefGoogle Scholar
  8. 8.
    T. Kaneko, H. Asahi, Y. Okuno, S.I. Gonda, Mombe (metalorganic molecular beam epitaxy) growth of InGaSb on GaSb. J. Cryst. Growth 95(1), 158–162 (1991).  https://doi.org/10.1016/0022-0248(89)90372-2 Google Scholar
  9. 9.
    G. Balakrishnan, S.H. Huang, A. Khoshakhlagh, P. Hill, A. Amtout, S. Krishna et al., Room-temperature optically-pumped InGaSb quantum well lasers monolithically grown on Si(100) substrate. Electron. Lett. 41(9), 531 (2005).  https://doi.org/10.1049/el:20050564 CrossRefGoogle Scholar
  10. 10.
    K. Takei, M. Madsen, H. Fang, R. Kapadia, S. Chuang, H.S. Kim et al., Nanoscale InGaSb heterostructure membranes on Si substrates for high hole mobility transistors. Nano Lett. 12(4), 2060–2066 (2012).  https://doi.org/10.1021/nl300228b CrossRefGoogle Scholar
  11. 11.
    Z.X. Yang, N. Han, M. Fang, H. Lin, H.Y. Cheung, S.P. Yip et al., Surfactant-assisted chemical vapour deposition of high-performance small-diameter gasb nanowires. Nat. Commun. 5, 5249 (2014).  https://doi.org/10.1038/ncomms6249 CrossRefGoogle Scholar
  12. 12.
    Z. Algarni, A. Singh, U. Philipose, Synthesis of amorphous InSb nanowires and a study of the effects of laser radiation and thermal annealing on nanowire crystallinity. Nanomaterials 8(8), 607 (2018).  https://doi.org/10.3390/nano8080607 CrossRefGoogle Scholar
  13. 13.
    Q. An, X. Meng, L. Zhang, Y. Zhao, Controllable growth of single crystalline CDS nanotubes by thermal evaporation. Mater. Lett. 136, 55–58 (2014).  https://doi.org/10.1016/j.matlet.2014.08.029 CrossRefGoogle Scholar
  14. 14.
    Y. Zhang, J. Guo, D. Xu, Y. Sun, F. Yan, One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl. Mater. Interfaces 9(30), 25465–25473 (2017).  https://doi.org/10.1021/acsami.7b07146 CrossRefGoogle Scholar
  15. 15.
    Y. Wang, J. Chi, K. Banerjee, D. Grützmacher, T. Schäpers, J.G. Lu, Field effect transistor based on single crystalline InSb nanowire. J. Mater. Chem. 21, 2459–2462 (2011).  https://doi.org/10.1039/c0jm03855e CrossRefGoogle Scholar
  16. 16.
    T.C. Thomas, R.S. Williams, Solid phase equilibria in the Au-Ga-As, Au-Ga-Sb, Au-In-As, and Au-In-Sb ternaries. J. Mater. Res. 1(2), 352–360 (1986).  https://doi.org/10.1557/JMR.1986.0352 CrossRefGoogle Scholar
  17. 17.
    Q. An, X. Meng, K. Xiong, Y. Qiu, A high-performance fully nanostructured individual CdSe nanotube photodetector with enhanced responsivity and photoconductive gain. J. Mater. Chem. C 5(28), 7057–7066 (2017).  https://doi.org/10.1039/C7TC01650F CrossRefGoogle Scholar
  18. 18.
    H.Y. Chen, K.W. Liu, X. Chen, Z.Z. Zhang, M.M. Fan, M.M. Jiang et al., Realization of a self-powered ZnO MSM UV photodetector with high responsivity using an asymmetric pair of Au electrodes. J. Mater. Chem. C 2(45), 9689–9694 (2014).  https://doi.org/10.1039/c4tc01839g CrossRefGoogle Scholar
  19. 19.
    D. Li, X. Sun, H. Song, Z. Li, H. Jiang, Y. Chen et al., Effect of asymmetric schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector. Appl. Phys. Lett. 99(26), 261102 (2011).  https://doi.org/10.1063/1.3672030 CrossRefGoogle Scholar
  20. 20.
    Z. Zhang, J.T. Yates, Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 112(10), 5520–5551 (2012).  https://doi.org/10.1021/cr3000626 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and TechnologyWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Hubei Nuclear Solid Physics Key LaboratoryWuhan UniversityHubeiPeople’s Republic of China

Personalised recommendations