Advertisement

Polypyrrole coated Fe3O4 nanoparticles decorated carbon nanotubes nanocomposites and the microwave absorption properties

  • Kaichuang Zhang
  • Xinggao ZhangEmail author
  • Xin Zhao
  • Xiqiang GaiEmail author
  • Wenshu An
  • Guofeng Fang
  • Airong Zhang
  • Xuefang ChenEmail author
Article
  • 3 Downloads

Abstract

Polypyrrole coated Fe3O4 nanoparticles decorated carbon nanotubes nanocomposites were prepared by in situ polymerization. The weight percentage of the Fe3O4 nanoparticles was only 18.4% according to the analysis of TGA. The microwave absorption performance of the polypyrrole coated Fe3O4 nanoparticles decorated carbon nanotubes nanocomposites was researched and the corresponding filler loading of paraffin in the tested samples was 80 wt%. The polypyrrole coated Fe3O4 nanoparticles decorated carbon nanotubes nanocomposites showed a maximum reflection loss value of − 51.67 dB at 10.2 GHz, and the corresponding thickness and frequency bandwidth (≤ −10 dB) were 3.0 mm and 4.88 GHz, respectively. The composite materials have both magnetic loss and dielectric loss. The coupling between different materials and the improved impedance matching can enhance the absorbing performance.

Notes

Supplementary material

10854_2019_2081_MOESM1_ESM.docx (838 kb)
Supplementary material 1 (DOCX 839 kb)

References

  1. 1.
    A. Poorbafrani, E. Kiani, Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)CrossRefGoogle Scholar
  2. 2.
    K. Zhang, X. Gao, Q. Zhang, T. Li, X. Chen, Pitch carbon coating graphene/carbon nanotubes lightweight composite and their excellent microwave absorption capacity. J. Mater. Sci. Mater. Electron. 28, 1352–1358 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Ranjbar, M.A. Taher, A. Sam, Mg-MOF-74 nanostructures: facile synthesis and characterization with aid of 2,6-pyridinedicarboxylic acid ammonium. J. Mater. Sci. Mater. Electron. 27, 1449–1456 (2016)CrossRefGoogle Scholar
  4. 4.
    P. Rajaei, M. Ranjbar, Synthesis and characterization of zinc oxide nanostructures by green capping agent and its photocatalytic degradation of methylene blue (MB). J. Mater. Sci. Mater. Electron. 27, 1708–1712 (2016)CrossRefGoogle Scholar
  5. 5.
    M.M. Foroughi, M. Ranjbar, Microwave-assisted synthesis and characterization photoluminescence properties: a fast, efficient route to produce ZnO/GrO nanocrystalline. J. Mater. Sci. Mater. Electron. 28, 1359–1363 (2017)CrossRefGoogle Scholar
  6. 6.
    K. Zhang, X. Gao, Q. Zhang, T. Li, H. Chen, X. Chen, Preparation and microwave absorption properties of asphalt carbon coated reduced graphene oxide/magnetic CoFe2O4 hollow particles modified multi-wall carbon nanotube composites. J. Alloys Compd. 723, 912–921 (2017)CrossRefGoogle Scholar
  7. 7.
    J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang, S. Wang, H. Zhao, Y. Sui, X. Zhou, W. Zhao, Fabrication, characterization and application in electromagnetic wave absorption of flower-like ZnO/Fe3O4 nanocomposites. Mater. Sci. Eng. B 175, 56–59 (2010)CrossRefGoogle Scholar
  8. 8.
    L. Sun, L. Zhan, Y. Shi, L. Chu, G. Ge, Z. He, Microemulsion synthesis and electromagnetic wave absorption properties of monodispersed Fe3O4/polyaniline core–shell nanocomposites. Synth. Met. 187, 102–107 (2014)CrossRefGoogle Scholar
  9. 9.
    X. Chen, Y. Huang, K. Zhang, X. Feng, M. Wang, Porous TiO2 nanobelts coated with mixed transition-metal oxides Sn3O4 nanosheets core-shell composites as high-performance anode materials of lithium ion batteries. Electrochim. Acta 259, 131–142 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Zhao, X. Ji, X. Guo, W. Jin, A. Dang, H. Li, T. Li, Preparation and electrochemical property of Fe3O4/MWCNT nanocomposite. Chem. Phys. Lett. 653, 202–206 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. Jin, M. Zhong, F. Wang, Y. Dong, Z. Lei, Q. Wang, B. Su, Enhanced magnetic and electrochemical properties of one-step synthesized PANI-Fe3O4 composite nanomaterial by a novel green solvothermal method. J. Alloys Compd. 695, 1807–1812 (2017)CrossRefGoogle Scholar
  12. 12.
    L. Zhu, X. Zeng, M. Chen, R. Yu, Controllable permittivity in 3D Fe3O4/CNTs network for remarkable microwave absorption performances. RSC Adv. 7, 26801–26808 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Wang, Y. Huang, C. Li, J. Chen, X. Sun, Enhanced microwave absorption properties of N-doped graphene@PANI nanorod arrays hierarchical structures modified by Fe3O4 nanoclusters. Synth. Met. 198, 300–307 (2014)CrossRefGoogle Scholar
  14. 14.
    L. Shi, Y. Zhao, Y. Li, X. Han, T. Zhang, Octahedron Fe3O4 particles supported on 3D MWCNT/graphene foam: in-situ method and application as a comprehensive microwave absorption material. Appl. Surf. Sci. 416, 329–337 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Li, G. Chen, Q. Li, G. Qiu, X. Liu, Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite. J. Alloys Compd. 509, 4104–4107 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Zhang, X. Yang, J. Cheng, M. Lu, B. Zhao, M. Cao, Facile preparation, characterization, and highly effective microwave absorption performance of CNTs/Fe3O4/PANI nanocomposites. J. Nanomater. 5, 1–7 (2013)Google Scholar
  17. 17.
    F. Ren, H. Yu, L. Wang, M. Saleem, Z. Tian, P. Ren, Current progress on the modification of carbon nanotubes and their application in electromagnetic wave absorption. RSC Adv. 4, 14419–14431 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Li, X. Weng, G. Wu, Y. Zhang, X. Lv, G. Gu, Synthesis of Fe3O4/polypyrrole/polyaniline nanocomposites by in situ method and their electromagnetic absorbing properties. J. Saudi Chem. Soc. 21, 466–472 (2016)CrossRefGoogle Scholar
  19. 19.
    R.-B. Yang, P.M. Reddy, C.-J. Chang, P.-A. Chen, J.-K. Chen, C.-C. Chang, Synthesis and characterization of Fe3O4/polypyrrole/carbon nanotube composites with tunable microwave absorption properties: role of carbon nanotube and polypyrrole content. Chem. Eng. J. 285, 497–507 (2016)CrossRefGoogle Scholar
  20. 20.
    R. Kumar, R.K. Singh, V.S. Tiwari, A. Yadav, R. Savu, A.R. Vaz, S.A. Moshkalev, Enhanced magnetic performance of iron oxide nanoparticles anchored pristine/N-doped multi-walled carbon nanotubes by microwave-assisted approach. J. Alloys Compd. 695, 1793–1801 (2017)CrossRefGoogle Scholar
  21. 21.
    W. Zhou, X. Hu, X. Bai, S. Zhou, C. Sun, J. Yan, P. Chen, Synthesis and Electromagnetic, Microwave Absorbing Properties of Core-Shell Fe3O4–Poly(3, 4-ethylenedioxythiophene) Microspheres. ACS Appl. Mater. Inter. 3, 3839–3845 (2011)CrossRefGoogle Scholar
  22. 22.
    Z. Wu, D. Tan, K. Tian, W. Hu, J. Wang, M. Su, L. Li, Facile preparation of core−shell Fe3O4@Polypyrrole Composites with Superior Electromagnetic Wave Absorption Properties. J. Phys. Chem. C 121, 15784–15792 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Chen, Y. Huang, K. Zhang, X.S. Feng, M. Wang, Synthesis and high-performance of carbonaceous polypyrrole nanotubes coated with SnS2 nanosheets anode materials for lithium ion batteries. Chem. Eng. J. 330, 470–479 (2017)CrossRefGoogle Scholar
  24. 24.
    X. Lu, Y. Wu, H. Cai, X. Qu, L. Ni, C. Teng, Y. Zhu, L. Jiang, Fe3O4 nanopearl decorated carbon nanotubes stemming from carbon onions with self-cleaning and microwave absorption properties. RSC Adv. 5, 54175–54181 (2015)CrossRefGoogle Scholar
  25. 25.
    N. Li, G.W. Huang, Y.Q. Li, H.M. Xiao, Q.P. Feng, N. Hu, S.Y. Fu, Enhanced Microwave Absorption Performance of Coated Carbon Nanotubes by Optimizing the Fe3O4 Nanocoating Structure. ACS Appl. Mater. Inter. 9, 2973–2983 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Bai, Y. Wang, F. Li, D. An, Z. Zhang, Y. Liu, Enhanced electromagnetic wave absorption properties of MoS2 -graphene hybrid nanosheets prepared by a hydrothermal method. J. Sol Gel Sci. Technol. 84, 104–109 (2017)CrossRefGoogle Scholar
  27. 27.
    H. Hekmatara, M. Seifi, K. Forooraghi, Microwave absorption property of aligned MWCNT/Fe3O4. J. Magn. Magn. Mater. 346, 186–191 (2013)CrossRefGoogle Scholar
  28. 28.
    S. Lu, W. Xu, X. Xuhai, K. Ma, X. Wang, Preparation, magnetism and microwave absorption performance of ultra-thin Fe3O4/carbon nanotube sandwich buckypaper. J. Alloys Compd. 606, 171–176 (2014)CrossRefGoogle Scholar
  29. 29.
    M.S. Cao, J. Yang, W.L. Song, D.Q. Zhang, B. Wen, H.B. Jin, Z.L. Hou, J. Yuan, Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces. 412, 6949–6956 (2012)CrossRefGoogle Scholar
  30. 30.
    B. Zhang, Y. Du, P. Zhang, Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness. J. Appl. Polym. Sci. 130, 1909–1916 (2013)CrossRefGoogle Scholar
  31. 31.
    H.L. Lv, G.B. Ji, W. Liu, H.Q. Zhang, Y.W. Du, Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features. J. Mater. Chem. C 3, 10232–10241 (2015)CrossRefGoogle Scholar
  32. 32.
    X. Liu, Y. Qiu, Y. Ma, H. Zheng, L.-S. Wang, Q. Zhang, Y. Chen, D.-L. Peng, Facile preparation and microwave absorption properties of porous Co/CoO microrods. J. Alloys Compd. 721, 411–418 (2017)CrossRefGoogle Scholar
  33. 33.
    Y. Zhang, Y. Tang, S. Gao, D. Jia, J. Ma, L. Liu, Sandwich-Like CNT@Fe3O4@C coaxial nanocables with enhanced lithium-storage capability. ACS Appl. Mater. Interfaces. 9, 1453 (2017)CrossRefGoogle Scholar
  34. 34.
    R. Kumar, H.K. Choudhary, S.P. Pawar, S. Bose, B. Sahoo, Carbon encapsulated nanoscale iron/iron-carbide/graphite particles for EMI shielding and microwave absorption. Phys. Chem. Chem. Phys. 19, 23268–23279 (2017)CrossRefGoogle Scholar
  35. 35.
    K. Zhang, X. Gao, Q. Zhang, T. Li, H. Chen, X. Chen, Synthesis, characterization and electromagnetic wave absorption properties of asphalt carbon coated graphene/magnetic NiFe2O4 modified multi-wall carbon nanotube composites. J. Alloys Compd. 721, 268–275 (2017)CrossRefGoogle Scholar
  36. 36.
    B. Zhao, X. Guo, W. Zhao, J. Deng, G. Shao, B. Fan, Z. Bai, R. Zhang, Yolk-shell Ni@SnO2 composites with a designable interspace to improve electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces. 8, 28917–28925 (2016)CrossRefGoogle Scholar
  37. 37.
    K. Zhang, X. Gao, Q. Zhang, X. Chen, Carbon coated paramagnetic Fe3O4 nanoparticles decorated MWCNTs-GNS composites: synthesis, characterization and their excellent electromagnetic absorption properties. J. Mater. Sci. Mater. Electron. 29, 3401–3410 (2018)CrossRefGoogle Scholar
  38. 38.
    K. Zhang, X. Gao, Q. Zhang, H. Chen, X. Chen, Fe3O4 nanoparticles decorated MWCNTs @ C ferrite nanocomposites and their enhanced microwave absorption properties. J. Magn. Magn. Mater. 452, 55–63 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute of Chemical DefenseBeijingPeople’s Republic of China
  2. 2.Qinhuangdao No.1 Middle SchoolQinhuangdaoPeople’s Republic of China
  3. 3.MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations