Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16687–16693 | Cite as

MOFs-derived MnCo2O4 nanowires with porous structures for lithium-ion battery anodes

  • Liguo Yang
  • Xin Wang
  • Fangcai ZhengEmail author


Porous binary metal oxides with high theoretical specific capacities and power density are attracting increasing attentions as anode materials for high-performance lithium-ion batteries. Herein, we report a facile strategy for the synthesis of porous MnCo2O4 nanowires through direct calcination of metal–organic frameworks in air. The resulting MnCo2O4 nanowires exhibited enhanced lithium-storage performance (929 mAh g−1 at 100 mA g−1 after 100 cycles). The outstanding lithium-storage performances of the resulting MnCo2O4 nanowires can be ascribed to their unique porous architectures, which offer a proximate pathway for the transfer of electrolyte and electrons over long cycling periods.



This work was supported by the National Natural Science Foundation of China (NSFC, 21601003, 21371009), Anhui Provincial Natural Foundation (Grant No. 1608085QB34) and China Postdoctoral Science Foundation (Grant No. 2017M61202).


  1. 1.
    A.R. Armstrong, C. Lyness, P.M. Panchmatia, M.S. Islam, P.G. Bruce, Nat. Mater. 10, 223–229 (2011)CrossRefGoogle Scholar
  2. 2.
    C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53, 1488–1504 (2014)CrossRefGoogle Scholar
  3. 3.
    S.Z. Huang, L. Zhang, X.Y. Lu, L.F. Liu, L.X. Liu, X.L. Sun, Y. Yin, S. Oswald, Z.Y. Zou, F. Ding, O. ACS Nano 11, 821–830 (2017)CrossRefGoogle Scholar
  4. 4.
    L.L. Zhang, D.H. Ge, G.L. Qu, J.W. Zheng, X.Q. Cao, H.W. Gu, Nanoscale 9, 5451–5457 (2017)CrossRefGoogle Scholar
  5. 5.
    Z.Y. Sui, P.Y. Zhang, M.Y. Xu, Y.W. Liu, Z.X. Wei, B.H. Han, ACS Appl. Mater. Interfaces 9, 43171–43178 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, J.X. Huang, J. Zeng, J. Xiong, J.B. Zhao, ACS Appl. Mater. Interfaces 9, 32801–32811 (2017)CrossRefGoogle Scholar
  7. 7.
    C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Angew. Chem. Int. Ed. 53, 1488–1504 (2014)CrossRefGoogle Scholar
  8. 8.
    L.F. Chen, S.X. Ma, S. Lu, Y. Feng, J. Zhang, S. Xin, S.H. Yu, Nano Res. 10, 1–11 (2017)CrossRefGoogle Scholar
  9. 9.
    B.L. Liu, D. Li, Z.J. Liu, L.L. Gu, W.H. Xie, Q. Li, P.Q. Guo, D.Q. Liu, D.Y. He, Appl. Surf. Sci. 394, 1–8 (2017)CrossRefGoogle Scholar
  10. 10.
    D. Sun, Y.G. Tang, D.L. Ye, J. Yan, H.S. Zhou, H.Y. Wang, ACS Appl. Mater. Interfaces 9, 5254–5262 (2017)CrossRefGoogle Scholar
  11. 11.
    C.H. Yan, Y. Zhu, Y.T. Li, Z.W. Fang, L.L. Peng, X. Zhou, G. Chen, G.H. Yu, Adv. Fucnt. Mater. 28, 1705951 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Zhu, J.J. Li, X.Y. Deng, C.N. He, E.Z. Liu, F. He, C.S. Shi, N.Q. Zhao, Adv. Funct. Mater. 27, 1605017 (2017)CrossRefGoogle Scholar
  13. 13.
    W.Q. Cao, W.Z. Wang, H.L. Shi, J. Wang, M.S. Cao, Y.J. Liang, M. Zhu, Nano Res. 11, 1437–1446 (2018)CrossRefGoogle Scholar
  14. 14.
    J.X. Wang, C. Wang, M.M. Zhen, Chem. Eng. J. 356, 1–10 (2019)CrossRefGoogle Scholar
  15. 15.
    L. Zhou, D.Y. Zhao, X.W. Lou, Adv. Mater. 24, 745–748 (2012)CrossRefGoogle Scholar
  16. 16.
    J.F. Li, S.L. Xiong, X.W. Li, Y.T. Qian, Nanoscale 5, 2045–2054 (2013)CrossRefGoogle Scholar
  17. 17.
    M.V. Reddy, G.V. Subba Rao, B.V. Chowdari, Chem. Rev. 113, 5364–5457 (2013)CrossRefGoogle Scholar
  18. 18.
    X.Z. Kong, T. Zhu, F.Y. Cheng, M.N. Zhu, X.X. Cao, S.Q. Liang, G.Z. Cao, A.Q. Pan, ACS Appl. Mater. Interfaces 10, 8730–8738 (2018)CrossRefGoogle Scholar
  19. 19.
    O.M. Yaghi, H.L. Li, T.L. Groy, J. Am. Chem. Soc. 118, 9096–9101 (1996)CrossRefGoogle Scholar
  20. 20.
    F.C. Zheng, Y. Yang, Q.W. Chen, Nat. Commun. 5, 5261 (2014)CrossRefGoogle Scholar
  21. 21.
    F.C. Zheng, G.L. Xia, Y. Yang, Q.W. Chen, Nanoscale 7, 9637–9645 (2015)CrossRefGoogle Scholar
  22. 22.
    F.C. Zheng, Z.C. Yin, H.Y. Xia, Y.G. Zhang, Mater. Lett. 197, 188–191 (2017)CrossRefGoogle Scholar
  23. 23.
    C.C. Sun, J. Yang, Z.Y. Dai, X.W. Wang, Y.F. Zhang, L.Q. Li, P. Chen, W. Huang, X.C. Dong, Nano Res. 9, 1300–1309 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Shi, Z.H. Liu, Y.J. Zheng, G.W. Zhou, Colloids Surf. A 522, 525–535 (2017)CrossRefGoogle Scholar
  25. 25.
    Y.N. Xu, X.F. Wang, C.H. An, J.J. Wang, L.F. Jiao, H.T. Yuan, J. Mater. Chem. A 2, 16480–16488 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Wang, C. Zhang, F. Kang, ACS Appl. Mater. Interfaces 7, 9185–9194 (2015)CrossRefGoogle Scholar
  27. 27.
    L.L. Zhang, Q.L. Tang, X.H. Chen, B.B. Fan, K.K. Xiao, S.Y. Zhang, W.N. Deng, A.P. Hu, J. Alloys Compd. 722, 387–393 (2017)CrossRefGoogle Scholar
  28. 28.
    W. Wen, J.M. Wu, M.H. Cao, Nanoscale 6, 12476–12481 (2014)CrossRefGoogle Scholar
  29. 29.
    G.Y. Huang, S.M. Xu, Z.H. Xu, H.Y. Sun, L.Y. Li, ACS Appl. Mater. Interfaces 6, 21325–21334 (2014)CrossRefGoogle Scholar
  30. 30.
    G.Y. Huang, X.Y. Guo, X. Cao, Q.H. Tian, H.Y. Sun, J. Alloys Compd. 695, 2937–2944 (2017)CrossRefGoogle Scholar
  31. 31.
    X.F. Wang, Y.H. Tang, P.H. Shi, J.C. Fan, Q.J. Xu, Y.L. Min, Chem. Eng. J. 334, 1642–1649 (2018)CrossRefGoogle Scholar
  32. 32.
    D. Tian, X.L. Zhou, Y.H. Zhang, Z. Zhou, X.H. Bu, Inorg. Chem. 54, 8159–8161 (2015)CrossRefGoogle Scholar
  33. 33.
    C. Li, X.B. Lou, M. Shen, X.S. Hu, Z. Guo, Y. Wang, B.W. Hu, Q. Chen, ACS Appl. Mater. Interfaces 8, 15352–15360 (2016)CrossRefGoogle Scholar
  34. 34.
    J.X. Shao, H. Zhou, M.Z. Zhu, J.H. Feng, A.H. Yuan, J. Alloys Compd. 768, 1049–1057 (2018)CrossRefGoogle Scholar
  35. 35.
    C.H. Zhao, B.J. Peng, Int. J. Electrochem. Sci. 13, 1505–1514 (2018)CrossRefGoogle Scholar
  36. 36.
    M.T. Liu, X.Y. Hou, T. Wang, Y.D. Ma, K. Sun, D.Q. Liu, Y.R. Wang, D.Y. He, J.S. Li, Electrochim. Acta 283, 979–986 (2018)CrossRefGoogle Scholar
  37. 37.
    Y.J. Chen, Y.S. Wang, Z.P. Wang, M.C. Zou, H. Zhang, W.Q. Zhao, M. Yousaf, L.S. Yang, A.Y. Cao, R.P.S. Han, Adv. Energy Mater. 8, 1702981 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Anyang Institute of Technology, College of Chemistry and Environmental EngineeringAnyangPeople’s Republic of China
  2. 2.Institute of Physical Science and Information Technology, Anhui UniversityHefeiPeople’s Republic of China
  3. 3.High Magnetic Field LaboratoryHefei Institute of Physical Science, Chinese Academy of ScienceHefeiPeople’s Republic of China

Personalised recommendations