Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16676–16686 | Cite as

Investigation of the temperature-dependent electrical properties of Au/PEDOT:WO3/p-Si hybrid device

  • Mine Keskin
  • Abdullah Akkaya
  • Enise AyyıldızEmail author
  • Ayşegül Uygun Öksüz
  • Mücella Özbay Karakuş
Article
  • 36 Downloads

Abstract

The electrical properties of Au/PEDOT:WO3/p-Si hybrid devices were studied in terms of current–voltage (I–V) and capacitance–voltage (C–V) measurements. Poly (3,4-ethylene dioxythiophene/tungsten trioxide (PEDOT:WO3) composite was prepared by an in situ chemical oxidative polymerization of monomer in 1-butyl-3-methylimidazoliumtetrafluoroborate (BMIMBF4). Optical and structural properties of the PEDOT:WO3 thin film was characterized by using FTIR, UV–Vis and AFM techniques. The bandgap energy of PEDOT:WO3 thin film was determined as 2.07 eV from UV–Vis spectrum. It was seen that the IV plots of the Au/PEDOT:WO3/p-Si hybrid devices were non-linear and C2V plots were linear in the reverse bias defining rectification behavior. The values of barrier height obtained from the IV and C2V plots of the fabricated devices were found to be 0.729 ± 0.012 eV and 0.817 ± 0.011 eV at room temperature in the dark environment, respectively. Devices have a high rectification behavior with a rectification ratio of 3.645 × 105 at ± 1 V. The temperature-dependent IV characteristics of one of the devices were also analyzed on the basis of the thermionic emission theory at low forward bias voltage regime. It was observed that the values of ideality factor decrease while the values of barrier height increase with increasing temperature. This kind of temperature dependence was attributed to the presence of the barrier inhomogeneity at the hybrid film/inorganic semiconductor interface. Then, by analysing of the forward bias IV characteristics at double logarithmic scale, it was seen that the carrier transport in the Au/PEDOT:WO3/p-Si hybrid device demonstrates the space-charge-limited current (SCLC) conduction mechanism controlled by a trap distribution above the valence band edge dominates in the range 0.1–0.3 V voltages. Furthermore, by analyzing the reverse bias IVT characteristics, it was shown that Schottky emission was the dominating current conduction mechanism in the temperature range of 240–320 K.

Notes

Acknowledgements

The authors would like to acknowledge the Scientific Research Projects Unit of Erciyes University for the financial support of project FYL-2018-8011, Erciyes University Nanotechnology Research Center (ERNAM) and Technology Research and Application Center (TAUM) for the AFM and UV–Vis measurements.

References

  1. 1.
    V. Saxena, B.D. Malhotra, Curr. Appl. Phys. 3, 293–305 (2003)CrossRefGoogle Scholar
  2. 2.
    C.N. Van, K. Potje-Kamloth, J. Phys. D Appl. Phys. 33, 2230 (2000)CrossRefGoogle Scholar
  3. 3.
    A.K. Singh, R. Prakash, RSC Adv. 2, 5277–5283 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Çetin, B. Boyarbay, A. Akkaya, A. Uygun, E. Ayyıldız, Synth. Met. 161, 2384–2389 (2011)CrossRefGoogle Scholar
  5. 5.
    S. Aydoğan, M. Sağlam, A. Türüt, J Phys.-Condens. Mat. 18, 2665–2676 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Sirringhaus, T. Kawase, R. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. Woo, Science 290, 2123–2126 (2000)CrossRefGoogle Scholar
  7. 7.
    B. Boyarbay, H. Cetin, A. Uygun, E. Ayyildiz, Appl. Phys. A 103, 89–96 (2011)CrossRefGoogle Scholar
  8. 8.
    V.R. Reddy, A. Umapathi, L.D. Rao, Curr. Appl. Phys. 13, 1604–1610 (2013)CrossRefGoogle Scholar
  9. 9.
    H. Peisert, T. Schwieger, J. Auerhammer, M. Knupfer, M. Golden, J. Fink, P. Bressler, M. Mast, J. Appl. Phys. 90, 466–469 (2001)CrossRefGoogle Scholar
  10. 10.
    A. Kumar, J. Brunet, C. Varenne, A. Ndiaye, A. Pauly, M. Penza, M. Alvisi, Sens. Actuators, B 210, 398–407 (2015)CrossRefGoogle Scholar
  11. 11.
    M. Raïssi, L. Vignau, E. Cloutet, B. Ratier, Org. Electron. 21, 86–91 (2015)CrossRefGoogle Scholar
  12. 12.
    X. Ma, M. Wang, G. Li, H. Chen, R. Bai, Mater. Chem. Phys. 98, 241–247 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Wei, M. Cheong, N. Nagarajan, I. Zhitomirsky, ECS Trans. 3, 1–9 (2007)CrossRefGoogle Scholar
  14. 14.
    D. Szymanska, I.A. Rutkowska, L. Adamczyk, S. Zoladek, P.J. Kulesza, J. Solid State Electrochem. 14, 2049–2056 (2010)CrossRefGoogle Scholar
  15. 15.
    D. Yıldız, J. Mater. Sci. 29, 17802–17808 (2018)Google Scholar
  16. 16.
    B. Li, J. Chen, Y. Zhao, D. Yang, D. Ma, Org. Electron. 12, 974–979 (2011)CrossRefGoogle Scholar
  17. 17.
    M. Deepa, A. Srivastava, K. Sood, A. Murugan, J. Electrochem. Soc. 155, D703–D710 (2008)CrossRefGoogle Scholar
  18. 18.
    C. Dulgerbaki, A.U. Oksuz, Adv. Electrode. Mater. 72, 61–102 (2016)CrossRefGoogle Scholar
  19. 19.
    Y.H. Kim, S. Kwon, J.H. Lee, S.M. Park, Y.M. Lee, J.W. Kim, J. Phys. Chem. C 115, 6599–6604 (2011)CrossRefGoogle Scholar
  20. 20.
    W. Kern, Handbook of Semiconductor Wafer Cleaning Technology (Noyes Park Ridge, Westwood New Jersey, 1993)Google Scholar
  21. 21.
    C. Dulgerbaki, N. Nohut Maslakci, A.I. Komur, A.U. Oksuz, Electroanal 28, 1873–1879 (2016)CrossRefGoogle Scholar
  22. 22.
    E. Eren, E. Aslan, A.U. Oksuz, Polym. Eng. Sci. 54, 2632–2640 (2014)CrossRefGoogle Scholar
  23. 23.
    S.V. Selvaganesh, J. Mathiyarasu, K. Phani, V. Yegnaraman, Nanoscale Res. Lett. 2, 546 (2007)CrossRefGoogle Scholar
  24. 24.
    C. Dulgerbaki, A.U. Oksuz, Electroanal 26, 2501–2512 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Lin, L. Huang, L. Chen, J. Zhang, L. Shen, Q. Chen, W. Shi, Sens. Actuators, B 216, 176–183 (2015)CrossRefGoogle Scholar
  26. 26.
    Z.A. Tan, L. Li, C. Cui, Y. Ding, Q. Xu, S. Li, D. Qian, Y. Li, J. Phys. Chem. C 116, 18626–18632 (2012)CrossRefGoogle Scholar
  27. 27.
    V. Chaudhary, A. Kaur, RSC Adv. 5, 73535–73544 (2015)CrossRefGoogle Scholar
  28. 28.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)CrossRefGoogle Scholar
  29. 29.
    J. Tauc, R. Grigorovici, A. Vancu, Physica Status Solidi (b) 15, 627–637 (1966)CrossRefGoogle Scholar
  30. 30.
    E. Güneri, F. Göde, S. Çevik, Thin Solid Films 589, 578–583 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Arya, A. Sharma, J. Mater. Sci. 29, 17903–17920 (2018)Google Scholar
  32. 32.
    A. Sharma, A.K. Thakur, Ionics 21, 1561–1575 (2015)CrossRefGoogle Scholar
  33. 33.
    J. Gurusiddappa, W. Madhuri, R.P. Suvarna, K.P. Dasan, Indian J. Adv. Chem. Sci. 4, 14–19 (2016)Google Scholar
  34. 34.
    A. Saroj, R. Singh, S. Chandra, J. Phys. Chem. Solids 75, 849–857 (2014)CrossRefGoogle Scholar
  35. 35.
    S.B. Aziz, O.G. Abdullah, M.A. Rasheed, J. Mater. Sci. 28, 12873–12884 (2017)Google Scholar
  36. 36.
    A. Jurkane, S. Gaidukov, Preparation and characterization of hot-pressed Li + ion conducting PEO composite electrolytes, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, pp. 012016, 2016Google Scholar
  37. 37.
    E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts (Clarendon Press, Oxford, 1988)Google Scholar
  38. 38.
    S. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)Google Scholar
  39. 39.
    F.E. Jones, C. Daniels-Hafer, B.P. Wood, R.G. Danner, M.C. Lonergan, J. Appl. Phys. 90, 1001 (2001)CrossRefGoogle Scholar
  40. 40.
    M. Kaya, H. Cetin, B. Boyarbay, A. Gok, E. Ayyildiz, J. Phys.-Condens. Mater. 19, 406205 (2007)CrossRefGoogle Scholar
  41. 41.
    M. Tahir, M.H. Sayyad, F. Wahab, F. Aziz, Phys. B 415, 77–81 (2013)CrossRefGoogle Scholar
  42. 42.
    O. Martinez, A.G. Bravo, N.J. Pinto, Macromolecules 42, 7924–7929 (2009)CrossRefGoogle Scholar
  43. 43.
    G.K. Reeves, H.B. Harrison, Electron Device Lett. 3, 111–113 (1982)CrossRefGoogle Scholar
  44. 44.
    A. Akkaya, T. Karaaslan, M. Dede, H. Çetin, E. Ayyıldız, Thin Solid Films 564, 367–374 (2014)CrossRefGoogle Scholar
  45. 45.
    H. Palm, M. Arbes, M. Schulz, Phys. Rev. Lett. 71, 2224–2227 (1993)CrossRefGoogle Scholar
  46. 46.
    V.R. Reddy, Indian J. Phys. 89, 463–469 (2015)CrossRefGoogle Scholar
  47. 47.
    Y.P. Song, R.L. Vanmeirhaeghe, W.H. Laflere, F. Cardon, Solid State Electron. 29, 633–638 (1986)CrossRefGoogle Scholar
  48. 48.
    E. Ayyildiz, H. Cetin, Z.J. Horváth, Appl. Surf. Sci. 252, 1153–1158 (2005)CrossRefGoogle Scholar
  49. 49.
    J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522–1533 (1991)CrossRefGoogle Scholar
  50. 50.
    A. Turut, M. Coșkun, F. Coșkun, O. Polat, Z. Durmuș, M. Çağlar, H. Efeoğlu, J. Alloy. Compd. 782, 566–575 (2019)CrossRefGoogle Scholar
  51. 51.
    B. Boyarbay, H. Cetin, A. Uygun, E. Ayyildiz, Thin Solid Films 518, 2216–2221 (2010)CrossRefGoogle Scholar
  52. 52.
    F.A. Padovani, R. Stratton, Solid State Electron. 9, 695–707 (1966)CrossRefGoogle Scholar
  53. 53.
    S.M. Sze, K.K. Ng, Metal-Semiconductor Contacts, Environ Sci Eng (John Wiley & Sons Inc, New Jersey, 2006), p. 832Google Scholar
  54. 54.
    M.A. Lampert, Phys. Rev. 103, 1648 (1956)CrossRefGoogle Scholar
  55. 55.
    M.A. Lampert, R.B. Schilling, Current injection in solids: the regional approximation method. Semicond. Semimet. 6, 1–96 (1970)CrossRefGoogle Scholar
  56. 56.
    M. Yamashita, C. Otani, M. Shimizu, H. Okuzaki, Appl. Phys. Lett. 99, 213 (2011)Google Scholar
  57. 57.
    L.W. Lim, F. Aziz, F.F. Muhammad, A. Supangat, K. Sulaiman, Synth. Met. 221, 169–175 (2016)CrossRefGoogle Scholar
  58. 58.
    S. Braun, W. Osikowicz, Y. Wang, W.R. Salaneck, Org. Electron. 8, 14–20 (2007)CrossRefGoogle Scholar
  59. 59.
    A.A. Kumar, V.R. Reddy, V. Janardhanam, H.D. Yang, H.J. Yun, C.J. Choi, J. Alloy. Compd. 549, 18–21 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mine Keskin
    • 1
  • Abdullah Akkaya
    • 2
  • Enise Ayyıldız
    • 3
    Email author
  • Ayşegül Uygun Öksüz
    • 4
  • Mücella Özbay Karakuş
    • 5
  1. 1.Department of Physics, Graduate School of Natural and Applied SciencesErciyes UniversityKayseriTurkey
  2. 2.Tech. Prog. Dept., Mucur Technical Vocational SchoolsAhi Evran UniversityKırşehirTurkey
  3. 3.Department of Physics, Faculty of SciencesErciyes UniversityKayseriTurkey
  4. 4.Department of Chemistry, Faculty of Arts and SciencesSüleyman Demirel UniversityIspartaTurkey
  5. 5.Department of Computer Engineering, Faculty of Engineering and ArchitectureBozok UniversityYozgatTurkey

Personalised recommendations