Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16659–16665 | Cite as

The bipolar resistive switching and negative differential resistance of NiO films induced by the interface states

  • Pan Yang
  • Wei Peng
  • Lingxia LiEmail author
  • Shihui YuEmail author
  • Haoran Zheng
Article
  • 51 Downloads

Abstract

The Au/NiO/Pt structure was fabricated by magnetron sputtering on the TiOx/SiO2/Si substrates to investigate the bipolar resistive switching and negative differential resistance in details. The XRD results shows the NiO films have the (111) preferential orientation. XPS measurements shows the Ni3+ exists in NiO films, indicating that the p-type nonstoichiometric nickel oxide films forms. The I–V characteristic curves show that the bipolar resistive switching and negative differential resistance seriously depend on the scan mode of applied voltage. When the applied voltage scans from negative voltage to positive voltage and return to negative voltage, the negative differential resistance is obtained accompanied with the distinct resistive switching characteristic. However, the negative differential resistance characteristic disappears when the applied voltage swept from 0 V to positive voltage and returned to 0 V from negative voltage. This behavior is highly affected by the interface states, located at the interface of Au and p-NiO films, trap and release the holes. The schematic diagram of energy band structure and interface state can clearly depict the trap-and-release process, resulting the bipolar resistive switching accompanied with the negative differential resistance.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 61671326, 61701338), the National Key Research and Development Program of China (Grant No. 2017YFB0406300).

References

  1. 1.
    F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng. R Rep. 83, 1–59 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)CrossRefGoogle Scholar
  3. 3.
    D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148 (2010)CrossRefGoogle Scholar
  4. 4.
    W.J. Lin, K.J. Zhu, Y.T. Su, H.B. Shi, Y. Meng, H.W. Zhao, In situ observation of conducting filament in NiO memristive devices by electroluminescence. Appl. Phys. Lett. 112, 202104 (2018)CrossRefGoogle Scholar
  5. 5.
    Y. Ahn, H.W. Shin, T.H. Lee, W.H. Kim, J.Y. Son, Effects of a Nb nanopin electrode on the resistive random-access memory switching characteristics of NiO thin films. Nanoscale 10, 13443–13448 (2018)CrossRefGoogle Scholar
  6. 6.
    A.S. Alexandrov, A.M. Bratkovsky, B. Bridle, S.E. Savelev, D.B. Strukov, R.S. Williams, Current-controlled negative differential resistance due to Joule heating in TiO2. Appl. Phys. Lett. 99, 202104 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Bousoulas, I. Michelakaki, D. Tsoukalas, Influence of Ti top electrode thickness on the resistive switching properties of forming free and self-rectified TiO2-x thin films. Thin Solid Films 571, 23–31 (2014)CrossRefGoogle Scholar
  8. 8.
    S.M. Hua, J.L. Yue, C. Jiang, X.Z. Tang, X.Z. Huang, Z.J. Du, C.Q. Wang, Resistive switching behavior and mechanism in flexible TiO2@Cf memristor crossbars. Ceram. Int. 45, 10182–10186 (2019)CrossRefGoogle Scholar
  9. 9.
    H.T. Sun, Q. Liu, S.B. Long, H.B. Lv, W. Banerjee, M. Liu, Multilevel unipolar resistive switching with negative differential resistance effect in Ag/SiO2/Pt device. J. Appl. Phys. 116, 154509 (2014)CrossRefGoogle Scholar
  10. 10.
    R.N. Bhowmik, K.V. Siva, Non-equilibrium character of resistive switching and negative differential resistance in Ga-doped Cr2O3 system. J. Magn. Magn. Mater. 457, 17–29 (2018)CrossRefGoogle Scholar
  11. 11.
    A. Kathalingam, H.-S. Kim, S.-D. Kim, H.-M. Park, H.-C. Park, Unipolar resistive switching of solution synthesized ZnO nanorod with self-rectifying and negative differential resistance effects. Mater. Lett. 142, 238–241 (2015)CrossRefGoogle Scholar
  12. 12.
    C. Funck, A. Marchewka, C. Baumer, P.C. Schmidt, P. Müller, R. Dittmann, M. Martin, R. Waser, S. Menzel, A theoretical and experimental view on the temperature dependence of the electronic conduction through a Schottky barrier in a resistively switching SrTiO3-based memory cell. Adv. Electron. Mater. 4, 1800062 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Hao, S. He, N. Qin, R.Q. Chen, D.H. Bao, Ce-doping induced enhancement of resistive switching performance of Pt/NiFe2O4/Pt memory devices. Ceram. Int. 43, S481–S487 (2017)CrossRefGoogle Scholar
  14. 14.
    K.M. Kim, S.J. Song, G.H. Kim, J.Y. Seok, M.H. Lee, J.H. Yoon, J. Park, C.S. Hwang, Collective motion of conducting filaments in Pt/n-type TiO2/p-type NiO/Pt stacked resistive switching memory. Adv. Funct. Mater. 21, 1587–1592 (2011)CrossRefGoogle Scholar
  15. 15.
    D.Y. Zhao, S. Qiao, Y.X. Luo, A.T. Chen, P.F. Zhang, P. Zheng, Z. Sun, M.H. Guo, F.K. Chiang, J. Wu, J.L. Luo, J.Q. Li, S. Kokado, Y.Y. Wang, Y.G. Zhao, Magnetoresistance behavior of conducting filaments in resistive-switching NiO with different resistance states. ACS Appl. Mater. Interfaces. 9, 10835–10846 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Kumar, R. Aluguri, U. Chand, T.Y. Tseng, Metal oxide resistive switching memory: materials, properties and switching mechanisms. Ceram. Int. 43, S547–S556 (2017)CrossRefGoogle Scholar
  17. 17.
    X. Kang, J.J. Guo, Y.J. Gao, S.X. Ren, W. Chen, X. Zhao, NiO-based resistive memory devices with highly improved uniformity boosted by ionic liquid pre-treatment. Appl. Surf. Sci. 480, 57–62 (2019)CrossRefGoogle Scholar
  18. 18.
    P. Misra, V.K. Sahu, R.S. Ajimsha, A.K. Das, B. Singh, Studies on resistive switching times in NiO thin films grown by pulsed laser deposition. J. Phys. D 50, 415106 (2017)CrossRefGoogle Scholar
  19. 19.
    Y.X. Luo, D.Y. Zhao, Y.G. Zhao, F.-K. Chiang, P.C. Chen, M.H. Guo, N.N. Luo, X.L. Jiang, P.X. Miao, Y. Sun, A.T. Chen, Z. Lin, J.Q. Li, W.H. Duan, J.W. Cai, Y.Y. Wang, Evolution of Ni nanofilaments and electromagnetic coupling in the resistive switching of NiO. Nanoscale 7, 642–649 (2015)CrossRefGoogle Scholar
  20. 20.
    U. Celano, L. Goux, R. Degraeve, A. Fantini, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Imaging the three-dimensional conductive channel in filamentary based oxide resistive switching memory. Nano Lett. 15, 7970–7975 (2015)CrossRefGoogle Scholar
  21. 21.
    W.H. Lu, J.X. Xiao, L.-M. Wong, S.J. Wang, K.Y. Zeng, Probing the ionic and electrochemical phenomena during resistive switching of NiO thin films. ACS Appl. Mater. Interfaces. 10, 8092–8101 (2018)CrossRefGoogle Scholar
  22. 22.
    M.Q. Guo, Y.C. Chen, C.Y. Lin, Y.F. Chang, B. Fowler, Q.Q. Li, J. Lee, Y.G. Zhao, Unidirectional threshold resistive switching in Au/NiO/Nb:SrTiO3 devices. Appl. Phys. Lett. 110, 233504 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Mundle, C. Carvajal, A.K. Pradhan, ZnO/Al:ZnO transparent resistive switching devices grown by atomic layer deposition for memristor applications. Langmuir 32, 4983–4995 (2016)CrossRefGoogle Scholar
  24. 24.
    G. Yang, C.H. Jia, Y.H. Chen, X. Chen, W.F. Zhang, Negative differential resistance and resistive switching behaviors in BaTiO3 thin films. J. Appl. Phys. 115, 204515 (2014)CrossRefGoogle Scholar
  25. 25.
    C.H. Jia, X.W. Sun, G.Q. Li, Y.H. Chen, W.F. Zhang, Origin of attendant phenomena of bipolar resistive switching and negative differential resistance in SrTiO3:Nb/ZnO heterojunctions. Appl. Phys. Lett. 104, 043501 (2014)CrossRefGoogle Scholar
  26. 26.
    A.A. Wagh, P.S.A. Kumar, H.L. Bhat, S. Elizabeth, Negative differential resistance in Gd0.5Sr0.5MnO3: a consequence of Joule heating. J. Appl. Phys. 108, 063703 (2010)CrossRefGoogle Scholar
  27. 27.
    Z. Jia, L.K. Wang, N.W. Zhang, T.L. Ren, J.J. Liou, Effects of anode materials on resistive characteristics of NiO thin films. Appl. Phys. Lett. 102, 042901 (2013)CrossRefGoogle Scholar
  28. 28.
    R. Poulain, A. Klein, J. Proost, Electrocatalytic properties of (100)-, (110)-, and (111)-oriented NiO thin films toward the oxygen evolution reaction. J. Phys. Chem. C 122, 22252–22263 (2018)CrossRefGoogle Scholar
  29. 29.
    B. Liu, L. Wang, Y. Ma, Y.K. Yuan, J. Yang, M.Z. Wang, J.F. Liu, X. Zhang, Y. Ren, Q. Du, H. Zhao, C.J. Pei, S.Z. Liu, H.Q. Yang, Enhanced gas–sensing properties and sensing mechanism of the foam structures assembled from NiO nanoflakes with exposed 1 1 1 facets. Appl. Surf. Sci. 470, 596–696 (2019)CrossRefGoogle Scholar
  30. 30.
    J. Goniakowski, F. Finocchi, C. Noguera, Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008)CrossRefGoogle Scholar
  31. 31.
    B. Liu, H.Q. Yang, A.H. Wei, H. Zhao, L.C. Ning, C.J. Zhang, S.Z. Liu, Superior photocatalytic activities of NiO octahedrons with loaded AgCl particles and charge separation between polar NiO 111 surfaces. Appl. Catal. B 172–173, 165–173 (2015)CrossRefGoogle Scholar
  32. 32.
    V.R. Reddy, P.R.S. Reddy, I.N. Reddy, C. Choi, Microstructural, electrical and carrier transport properties of Au/NiO/n-GaN heterojunction with a nickel oxide interlayer. RSC Adv. 6, 105761–105770 (2016)CrossRefGoogle Scholar
  33. 33.
    E. Turgut, O. Coban, S. Saritas, S. Tuzemen, M. Yildirimc, E. Gurc, Oxygen partial pressure effects on the RF sputtered p-type NiO hydrogen gas sensors. Appl. Surf. Sci. 435, 880–885 (2018)CrossRefGoogle Scholar
  34. 34.
    T.F. Chen, A.J. Wang, B.Y. Shang, Z.L. Wu, Y.L. Li, Y.S. Wang, Property modulation of NiO films grown by radio frequency magnetron sputtering. J. Alloy. Compd. 643, 167–173 (2015)CrossRefGoogle Scholar
  35. 35.
    P. Yang, L.X. Li, S.H. Yu, H.R. Zheng, W. Peng, The annealing temperature and films thickness effect on the surface morphology, preferential orientation and dielectric property of NiO films. Appl. Surf. Sci. 493, 396–403 (2019)CrossRefGoogle Scholar
  36. 36.
    S. Oswald, W. Bruckner, XPS depth profile analysis of non-stoichiometric NiO films. Surf. Interface Anal. 36, 17–22 (2004)CrossRefGoogle Scholar
  37. 37.
    K.W. Chung, Z. Wang, J.C. Costa, F. Williamson, P.P. Ruden, M.I. Nathan, Barrier height change in GaAs Schottky diodes induced by piezoelectric effect. Appl. Phys. Lett. 59, 1191–1193 (1991)CrossRefGoogle Scholar
  38. 38.
    J.H. Song, Y. Zhang, C. Xu, W.Z. Wu, Z.L. Wang, Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage. Nano Lett. 11, 2829–2834 (2011)CrossRefGoogle Scholar
  39. 39.
    Y. Lee, H. Kwon, J.-S. Yoon, J.K. Kim, Overcoming ineffective resistance modulation in p-type NiO gas sensor by nanoscale Schottky contacts. Nanotechnology 30, 115501 (2019)CrossRefGoogle Scholar
  40. 40.
    H.-I. Chen, C.-Y. Hsiao, W.-C. Chen, C.-H. Chang, T.-C. Chou, I.-P. Liu, K.-W. Lin, W.-C. Liu, Characteristics of a Pt/NiO thin film-based ammonia gas sensor. Sens. Actuators B 256, 962–967 (2018)CrossRefGoogle Scholar
  41. 41.
    J.-L. Sun, X.C. Zhao, J.-L. Zhu, Metal–insulator transition in Au-NiO-Ni dual Schottky nanojunctions. Nanotechnology 20, 455203 (2009)CrossRefGoogle Scholar
  42. 42.
    N. Brilis, C. Foukaraki, E. Bourithis, D. Tsamskis, A. Giannoudakos, M. Kompitsas, T. Xenidou, A. Boudouvis, Development of NiO-based thin film structures as efficient H2 gas sensors operating at room temperatures. Thin Solid Films 515, 8484–8489 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Microelectronics and Key Laboratory for Advanced Ceramics and Machining TechnologyTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations