Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16651–16658 | Cite as

Phase evolution, far-infrared spectra, and ultralow loss microwave dielectric ceramic of Zn2Ge1+xO4+2x (− 0.1 ≤ x ≤ 0.2)

  • Changzhi Yin
  • Ying TangEmail author
  • Junqi Chen
  • Chunchun Li
  • Liang FangEmail author
  • Feihu Li
  • Yijun Huang


A series of willemite based ceramics Zn2Ge1+xO4+2x with − 0.1 ≤ x ≤ 0.2 were prepared by the solid-state reaction method. Influences of Ge nonstoichiometry on the crystal structure, densification, and microwave dielectric properties were evaluated in terms of X-ray diffraction, SEM, dielectric measurements and far-infrared spectra. Ge excess favored the formation of single-phase willemite but a high level of excess induced appearance of GeO2. In contrast, nominal composition and those with Ge deficiency comprised of ZnO and the willemite phase. Ge excess was found to be beneficial to the densification and dielectric properties optimization of Zn2Ge1+xO4+2x. A composition with x = 0.1 (Zn2Ge1.1O4.2) exhibited the optimum microwave dielectric properties with a relative permittivity εr ~ 7.09, a quality factor Q × f ~ 112,700 GHz (at 14.48 GHz), and a temperature coefficient of resonance frequency τf ~ − 51 ppm/°C.



This work was supported by Natural Science Foundation of China (Grant Nos. 21965009, 51502047, and 21761008), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Grant Nos. 2015GXNSFFA139003, 2016GXNSFBA380134, 2016GXNSFAA380018, and 2018GXNSFAA138175), and Project of Scientific Research and Technical Exploitation Program of Guilin (Grant No. 20170225). The authors would also like to thank the administrators in the IR beamline workstation of National Synchrotron Radiation Laboratory (NSRL) for their help in the IR measurement.


  1. 1.
    M.T. Sebastian, R. Ubic, H. Jantunen, Low-loss dielectric ceramic materials and their properties. Int. Mater. Rev. 60, 392–412 (2015)CrossRefGoogle Scholar
  2. 2.
    X.Q. Song, K. Du, J. Li, X.K. Lan, W.Z. Lu, X.H. Wang, W. Lei, Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 45, 279–286 (2019)CrossRefGoogle Scholar
  3. 3.
    C.C. Li, C.Z. Yin, J.Q. Chen, H.C. Xiang, Y. Tang, L. Fang, Crystal structure and dielectric properties of germanate melilites Ba2MGe2O7 (M = Mg and Zn) with low permittivity. J. Eur. Ceram. Soc. 38, 5246–5251 (2018)CrossRefGoogle Scholar
  4. 4.
    Z.Y. Zou, X.K. Lan, W.Z. Lu, G.F. Fan, X.H. Wang, X.C. Wang, P. Fu, W. Lei, Novel high Curie temperature Ba2ZnSi2O7 ferroelectrics with low-permittivity microwave dielectric properties. Ceram. Int. 42, 16387–16391 (2016)CrossRefGoogle Scholar
  5. 5.
    X.Q. Song, K. Du, X.Z. Zhang, J. Li, W.Z. Lu, X.C. Wang, W. Lei, Crystal structure, phase composition and microwave dielectric properties of Ca3MSi2O9 ceramics. J. Alloys Compd. 750, 996–1002 (2018)CrossRefGoogle Scholar
  6. 6.
    H.C. Xiang, L. Fang, W.S. Fang, Y. Tang, C.C. Li, A novel low-firing microwave dielectric ceramic Li2ZnGe3O8 with cubic spinel structure. J. Eur. Ceram. Soc. 37, 625–629 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Chen, F. Luo, D. Zhu, Dielectric and microwave absorption properties of divalent-doped Na3Zr2Si2PO12 ceramics. J. Eur. Ceram. Soc. 38, 4440–4445 (2018)CrossRefGoogle Scholar
  8. 8.
    C.C. Li, Z.H. Wei, H. Luo, L. Fang, Sintering behavior and microwave dielectric properties of LiMVO4 (M = Mg, Zn). J. Mater. Sci.: Mater. Electron. 26, 9117–9121 (2015)Google Scholar
  9. 9.
    D. Zhou, L.X. Pang, D.W. Wang, I.M. Reaney, BiVO4 based high k microwave dielectric materials: a review. J. Mater. Chem. C. 6, 9290–9313 (2018)CrossRefGoogle Scholar
  10. 10.
    C.C. Li, H.C. Xiang, M.Y. Xu, Y. Tang, L. Fang, Li2AGeO4 (A = Zn, Mg): two novel low permittivity microwave dielectric ceramics with olivine structure. J. Eur. Ceram. Soc. 38, 1524–1528 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Sugihara, K. Kakimoto, I. Kagomiya, H. Ohsato, Microwave dielectric properties of porous Mg2SiO4 filling with TiO2 prepared by a liquid phase deposition process. J. Eur. Ceram. Soc. 27, 3105–3108 (2007)CrossRefGoogle Scholar
  12. 12.
    N.H. Nguyen, J.B. Lim, S. Nahm, Effect of Zn/Si ratio on the microstructural and microwave dielectric properties of Zn2SiO4, ceramics. J. Am. Ceram. Soc. 90, 3127–3130 (2007)CrossRefGoogle Scholar
  13. 13.
    C.X. Chen, S.P. Wu, Y.X. Fan, Synthesis and microwave dielectric properties of B2O3-doped Mg2GeO4 ceramics. J. Alloys Compd. 578, 153–156 (2013)CrossRefGoogle Scholar
  14. 14.
    S.P. Wu, Q. Ma, Synthesis, characterization and microwave dielectric properties of Zn2GeO4 ceramics. J. Alloys Compd. 567, 40–46 (2013)CrossRefGoogle Scholar
  15. 15.
    Y.J. Eoh, E.S. Kim, High quality factor of (Zn0.6Mg0.4)1.918Ge3.918 microwave dielectrics. Ceram. Int. 41, S537–S543 (2015)CrossRefGoogle Scholar
  16. 16.
    B. Ma, F. Wen, H. Jiang, J. Yang, P. Ying, C. Li, The synergistic effects of two co-catalysts on Zn2GeO4 on photocatalytic water splitting. Catal. Lett. 134, 78–86 (2010)CrossRefGoogle Scholar
  17. 17.
    X.H. Ma, S.H. Kweona, M. Imb, S. Nahm, Low-temperature sintering and microwave dielectric properties of B2O3-added ZnO-deficient Zn2GeO4 ceramics for advanced substrate application. J. Eur. Ceram. Soc. 38, 4682–4688 (2018)CrossRefGoogle Scholar
  18. 18.
    Q.S. Cao, W.Z. Lu, Z.Y. Zou, G.F. Fan, M. Fu, W. Lei, Phase compositions and reaction models of zinc manganese oxides with different Zn/Mn ratios. J. Alloys Compd. 661, 196–200 (2016)CrossRefGoogle Scholar
  19. 19.
    V.B.R. Boppana, N.D. Hould, R.F. Lobo, Synthesis, characterization and photocatalytic properties of novel zinc germanate nano-materials. J. Solid State Chem. 184, 1054–1062 (2011)CrossRefGoogle Scholar
  20. 20.
    Y.X. Huang, Q.X. Cao, Z.M. Li, H.Q. Jiang, Y.P. Wang, G.F. Li, Effect of synthesis atmosphere on the microwave dielectric properties of ZnO powders. J. Am. Ceram. Soc. 92, 2129–2131 (2009)CrossRefGoogle Scholar
  21. 21.
    Y.X. Zhao, S.W. Yang, J. Zhu, G.F. Ji, F. Peng, The study of oxygen ion motion in Zn2GeO4 by Raman spectroscopy. Solid State Ion. 274, 12–16 (2015)CrossRefGoogle Scholar
  22. 22.
    S.K. Sharma, A.K. Misra, B. Sharma, Portable remote Raman system for monitoring hydrocarbon, gas hydrates and explosives in the environment. Spectrochim. Acta A 61, 2404–2412 (2005)CrossRefGoogle Scholar
  23. 23.
    O. Yamaguchi, J. Hidaka, K. Hirota, Formation and characterization of alkoxy-derived Zn2GeO4. J. Mater. Sci. Lett. 10, 1471–1474 (1991)CrossRefGoogle Scholar
  24. 24.
    S.L. Zhang, F.M. Zeng, X.T. Wang, C. Li, C.W. Wang, Y. Zhang, H. Lin, J.M. Qin, J.H. Liu, Growth and structure characterization of Cr4+ doped Ca2GeO4 laser crystal. Acta Phys Sin. 59, 7214–7218 (2010)Google Scholar
  25. 25.
    C.W. Zheng, X.C. Fan, X.M. Chen, Analysis of infrared reflection spectra of (Mg1-xZnx)Al2O4 microwave dielectric ceramics. J. Am. Ceram. Soc. 91, 490–493 (2008)CrossRefGoogle Scholar
  26. 26.
    R. Jeanloz, Infrared spectra of olivine polymorphs: α, β phase and spinel. Phys. Chem. Miner. 5, 327–341 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Optical and Electronic Materials and DevicesGuilin University of TechnologyGuilinChina
  2. 2.College of Material Science and EngineeringGuilin University of TechnologyGuilinChina
  3. 3.College of Information Science and EngineeringGuilin University of TechnologyGuilinChina
  4. 4.College of Materials and Chemical EngineeringThree Gorges UniversityYichangChina

Personalised recommendations