Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16636–16650 | Cite as

Electrical conductivity and electromagnetic interference shielding properties of polymer/carbon composites

  • Ahsan Nazir
  • Haojie YuEmail author
  • Li WangEmail author
  • Shah Fahad
  • Kaleem-ur-Rahman Naveed
  • Amin Khan
  • Bilal Ul Amin
  • Tengfei Lin
  • Muhammad Usman
  • Tarig Elshaarani
  • Fazal Haq
Article
  • 96 Downloads

Abstract

Ferrocene-based polythiophene (PT) composites containing different carbon fillers like multi-walled carbon nanotubes (MWCNTs), reduced graphene oxide (RGO) and carbon black (CB) were prepared through in situ chemical oxidative polymerization method. The prepared PT composites were characterized by employing SEM, TEM, FTIR, XRD and XPS techniques. The thermal stability of the PT composites was investigated by TG analysis. It was found that the thermal stability of PT composites was highly improved as compared with pure PT. The electrical conductivity of the composites was measured by a typical four-probe method. Electrical conductivity measurements indicated that the PT composites showed excellent electrical conductivity. Electromagnetic interference shielding effectiveness (EMI SE) of the composites was measured by using coaxial method in the frequency range of 1–4.5 GHz. The total shielding effectiveness (SET) achieved for PT composites along with MWCNT, RGO and CB was − 24 dB, − 11.27 dB, and − 10.46 dB at 50 wt% composite sample loading in the paraffin wax matrix, respectively. Therefore, the PT-MWCNT composite can be used for the EMI shielding applications.

Notes

Compliance with ethical standards

Conflicts of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Y. Zhang, Y. Huang, T. Zhang et al., Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)CrossRefGoogle Scholar
  2. 2.
    L. Wang, Y. Huang, X. Sun et al., Synthesis and microwave absorption enhancement of graphene/Fe3O4/SiO2/NiO nanosheet hierarchical structures. Nanoscale 6, 3157–3164 (2014)CrossRefGoogle Scholar
  3. 3.
    Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)CrossRefGoogle Scholar
  4. 4.
    F. Shahzad, M. Alhabeb, C.B. Hatter et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016)CrossRefGoogle Scholar
  5. 5.
    Q.Y. Wen, H.W. Zhang, Q.H. Yang et al., A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D-Appl. Phys. 45, 1–5 (2012)Google Scholar
  6. 6.
    B.R. Kim, H.K. Lee, E. Kim, S.H. Lee, Intrinsic electromagnetic radiation shielding/absorbing characteristics of polyaniline-coated transparent thin films. Synth. Met. 160, 1838–1842 (2010)CrossRefGoogle Scholar
  7. 7.
    J.M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74, 211–232 (2013)CrossRefGoogle Scholar
  8. 8.
    M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Sankaran, K. Deshmukh, M.B. Ahamed, S.K. Khadheer Pasha, Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos. Part A-Appl. S 114, 49–71 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Yang, M. Ye, A. Han, Y. Zhang, K. Zhang, Preparation and electromagnetic attenuation properties of MoS2–PANI composites: a promising broadband absorbing material. J. Mater. Sci. 30, 292–301 (2019)Google Scholar
  11. 11.
    H. Zhu, Y. Yang, H. Duan, G. Zhao, Y. Liu, Electromagnetic interference shielding polymer composites with magnetic and conductive FeCo/reduced graphene oxide 3D networks. J. Mater. Sci. 30, 2045–2056 (2019)Google Scholar
  12. 12.
    A. Nazir, H. Yu, L. Wang et al., Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding. J. Mater. Sci. 53, 8699–8719 (2018)CrossRefGoogle Scholar
  13. 13.
    M. Arjmand, T. Apperley, M. Okoniewski, U. Sundararaj, Comparative study of electromagnetic interference shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene composites. Carbon 50, 5126–5134 (2012)CrossRefGoogle Scholar
  14. 14.
    S.M.S. Ghezghapan, A. Javadi, Effect of processing methods on electrical percolation and electromagnetic shielding of PC/MWCNTs nanocomposites. Polym. Compos. 38, E269–E276 (2017)CrossRefGoogle Scholar
  15. 15.
    K. Zhang, H.O. Yu, Y.D. Shi et al., Morphological regulation improved electrical conductivity and electromagnetic interference shielding in poly(L-lactide)/poly(epsilon-caprolactone)/carbon nanotube nanocomposites via constructing stereocomplex crystallites. J. Mater. Chem. C 5, 2807–2817 (2017)CrossRefGoogle Scholar
  16. 16.
    D.X. Yan, H. Pang, B. Li et al., Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25, 559–566 (2015)CrossRefGoogle Scholar
  17. 17.
    J.N. Gavgani, H. Adelnia, D. Zaarei, M. Moazzami Gudarzi, Lightweight flexible polyurethane/reduced ultralarge graphene oxide composite foams for electromagnetic interference shielding. RSC Adv. 6, 27517–27527 (2016)CrossRefGoogle Scholar
  18. 18.
    X.S. Hu, Y. Shen, L.S. Lu, J. Xu, J.J. Zhen, Enhanced electromagnetic interference shielding effectiveness of ternary PANI/CuS/RGO composites. J. Mater. Sci. 28, 6865–6872 (2017)Google Scholar
  19. 19.
    M.H. Al-Saleh, U. Sundararaj, X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J. Phys. D Appl. Phys. 46, 035304 (2013)CrossRefGoogle Scholar
  20. 20.
    P. Jin Gyu, L. Jeffrey, C. Qunfeng et al., Electromagnetic interference shielding properties of carbon nanotube buckypaper composites. Nanotechnology 20, 415702 (2009)CrossRefGoogle Scholar
  21. 21.
    K. Hu, B. Xu, H. Shao, Determination of hydrophobicity scale of tetraphenylborate and its derivatives by ferrocene based three-phase electrodes. Electrochem. Commun. 50, 36–38 (2015)CrossRefGoogle Scholar
  22. 22.
    A. Alkan, A. Natalello, M. Wagner, H. Frey, F.R. Wurm, Ferrocene containing multifunctional polyethers: monomer sequence monitoring via quantitative 13C NMR spectroscopy in bulk. Macromolecules 47, 2242–2249 (2014)CrossRefGoogle Scholar
  23. 23.
    Z. Bicil, P. Camurlu, B. Yucel, B. Becer, Multichromic, ferrocene clicked poly(2,5-dithienylpyrrole)s. J. Polym. Res. 20, 1–6 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Kumar, S.R. Dhakate, P. Saini, R.B. Mathur, Improved electromagnetic interference shielding effectiveness of light weight carbon foam by ferrocene accumulation. RSC Adv. 3, 4145–4151 (2013)CrossRefGoogle Scholar
  25. 25.
    M.O. Ansari, M.M. Khan, S.A. Ansari, M.H. Cho, Polythiophene nanocomposites for photodegradation applications: past, present and future. J. Saudi Chem. Soc. 19, 494–504 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Kim, J.S. Oh, M.G. Kim et al., Electromagnetic interference (EMI) transparent shielding of reduced graphene oxide (RGO) interleaved structure fabricated by electrophoretic deposition. ACS Appl. Mater Interface 6, 17647–17653 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5, 2131–2134 (2005)CrossRefGoogle Scholar
  28. 28.
    Z. Liu, G. Bai, Y. Huang et al., Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites. Carbon 45, 821–827 (2007)CrossRefGoogle Scholar
  29. 29.
    W.L. Song, M.A. Cao, M.-M.A. Lu et al., Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology 24, 115708 (2013)CrossRefGoogle Scholar
  30. 30.
    Q.K. Hu, Myung Soo, Electromagnetic interference shielding properties of CO2 activated carbon black filled polymer coating materials. Carbon Lett. 9, 298–302 (2008)CrossRefGoogle Scholar
  31. 31.
    S.K. Unnikrishnan, S. Vinayasree, G.P. Halliah, M.R. Anantharaman, Flexible electromagnetic interference shields in S band region from textile materials. J. Ind. Text. 43, 215–230 (2013)CrossRefGoogle Scholar
  32. 32.
    Y.K. Hong, C.Y. Lee, C.K. Jeong, D.E. Lee, K. Kim, J. Joo, Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges. Rev. Sci. Instrum. 74, 1098–1102 (2003)CrossRefGoogle Scholar
  33. 33.
    K. Lakshmi, H. John, K.T. Mathew, R. Joseph, K.E. George, Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater. 57, 371–375 (2009)CrossRefGoogle Scholar
  34. 34.
    G. Wang, V. Babaahmadi, N. He et al., Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility. J. Power Sources 367, 34–41 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Stankovich, D.A. Dikin, R.D. Piner et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  36. 36.
    H. Khalid, L. Wang, H. Yu et al., Synthesis of soluble ferrocene-based polythiophenes and their properties. J. Inorg. Organomet. 25, 1511–1520 (2015)CrossRefGoogle Scholar
  37. 37.
    T. Cai, Y. Zhou, E. Wang et al., Low bandgap polymers synthesized by FeCl3 oxidative polymerization. Sol. Energy Mater. Sol. C 94, 1275–1281 (2010)CrossRefGoogle Scholar
  38. 38.
    H. Khalid, H. Yu, L. Wang et al., Synthesis of ferrocene-based polythiophenes and their applications. Polym. Chem. 5, 6879–6892 (2014)CrossRefGoogle Scholar
  39. 39.
    F. Andreani, L. Angiolini, V. Grenci, E. Salatelli, Optically active polyalkylthiophenes: synthesis and polymerization of chiral, symmetrically substituted, quinquethiophene monomer. Synth. Met. 145, 221–227 (2004)CrossRefGoogle Scholar
  40. 40.
    B.H. Patil, A.D. Jagadale, C.D. Lokhande, Synthesis of polythiophene thin films by simple successive ionic layer adsorption and reaction (SILAR) method for supercapacitor application. Synth. Met. 162, 1400–1405 (2012)CrossRefGoogle Scholar
  41. 41.
    F. Alvi, M.K. Ram, P.A. Basnayaka, E. Stefanakos, Y. Goswami, A. Kumar, Graphene–polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta 56, 9406–9412 (2011)CrossRefGoogle Scholar
  42. 42.
    R.L. Wang, V. Sivakumar, T.W. Johnson, G. Hastings, FTIR difference spectroscopy in combination with isotope labeling for identification of the carbonyl modes of P700 and P700(+) in photosystem I. Biophys. J. 86, 1061–1073 (2004)CrossRefGoogle Scholar
  43. 43.
    S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)CrossRefGoogle Scholar
  44. 44.
    C. Cunha, S. Panseri, D. Iannazzo et al., Hybrid composites made of multiwalled carbon nanotubes functionalized with Fe3O4 nanoparticles for tissue engineering applications. Nanotechnology 23, 465102 (2012)CrossRefGoogle Scholar
  45. 45.
    C.D. Zappielo, D.M. Nanicuacua, W.N.L. dos Santos et al., Solid phase extraction to on-line preconcentrate trace cadmium using chemically modified nano-carbon black with 3-mercaptopropyltrimethoxysilane. J. Braz. Chem. Soc. 27, 1715–1726 (2016)Google Scholar
  46. 46.
    E. Tahmasebi, Y. Yamini, M. Moradi, A. Esrafili, Polythiophene-coated Fe3O4 superparamagnetic nanocomposite: synthesis and application as a new sorbent for solid-phase extraction. Anal. Chim. Acta 770, 68–74 (2013)CrossRefGoogle Scholar
  47. 47.
    J. Zhao, Y. Xie, Z. Le et al., Preparation and characterization of an electromagnetic material: the graphene nanosheet/polythiophene composite. Synth. Met. 181, 110–116 (2013)CrossRefGoogle Scholar
  48. 48.
    Q. Zhang, L. Jiao, C. Shan, G. Yang, X. Xu, L. Niu, Synthesis and properties of ferrocene-functionalised polythiophene derivatives. Synth. Met. 159, 1422–1426 (2009)CrossRefGoogle Scholar
  49. 49.
    O. Zabihi, A. Khodabandeh, S.M. Mostafavi, Preparation, optimization and thermal characterization of a novel conductive thermoset nanocomposite containing polythiophene nanoparticles using dynamic thermal analysis. Polym. Degrad. Stabil. 97, 3–13 (2012)CrossRefGoogle Scholar
  50. 50.
    R. Atchudan, J. Joo, A. Pandurangan, An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition. Mater. Res. Bull. 48, 2205–2212 (2013)CrossRefGoogle Scholar
  51. 51.
    J. Sun, X. Shu, Y. Tian et al., Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B Chem. 241, 658–664 (2017)CrossRefGoogle Scholar
  52. 52.
    T. Ungar, J. Gubicza, G. Ribarik, C. Pantea, T.W. Zerda, Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon 40, 929–937 (2002)CrossRefGoogle Scholar
  53. 53.
    J. Heeg, C. Kramer, M. Wolter, S. Michaelis, W. Plieth, W.J. Fischer, Polythiophene—O3 surface reactions studied by XPS. Appl. Surf. Sci. 180, 36–41 (2001)CrossRefGoogle Scholar
  54. 54.
    S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, R.V. Ramanujan, Structural, elemental, optical and magnetic study of Fe doped ZnO and impurity phase formation. Prog. Nat. Sci. 24, 142–149 (2014)CrossRefGoogle Scholar
  55. 55.
    S. Suzer, Electron spectroscopic investigation of polymers and glasses. Pure Appl. Chem. 69, 163–168 (1997)CrossRefGoogle Scholar
  56. 56.
    C.M. Woodbridge, D.L. Pugmire, R.C. Johnson, N.M. Boag, M.A. Langell, HREELS and XPS studies of ferrocene on Ag(100). J. Phys. Chem. B 104, 3085–3093 (2000)CrossRefGoogle Scholar
  57. 57.
    Q. Dong, X. Zhuang, Z. Li et al., Efficient approach to iron/nitrogen co-doped graphene materials as efficient electrochemical catalysts for the oxygen reduction reaction. J. Mater. Chem. A 3, 7767–7772 (2015)CrossRefGoogle Scholar
  58. 58.
    C.M. Wong, D.B. Walker, A.H. Soeriyadi, J.J. Gooding, B.A. Messerle, A versatile method for the preparation of carbon-rhodium hybrid catalysts on graphene and carbon black. Chem. Sci. 7, 1996–2004 (2016)CrossRefGoogle Scholar
  59. 59.
    M. Mishra, A.P. Singh, V. Gupta, A. Chandra, S.K. Dhawan, Tunable EMI shielding effectiveness using new exotic carbon: polymer composites. J. Alloy. Compd. 688, 399–403 (2016)CrossRefGoogle Scholar
  60. 60.
    A.C. de Souza, A.T.N. Pires, V. Soldi, Thermal stability of ferrocene derivatives and ferrocene-containing polyamides. J. Therm. Anal. 70, 405–414 (2002)CrossRefGoogle Scholar
  61. 61.
    M. Jana, S. Saha, P. Khanra et al., Non-covalent functionalization of reduced graphene oxide using sulfanilic acid azocromotrop and its application as a supercapacitor electrode material. J. Mater. Chem. A 3, 7323–7331 (2015)CrossRefGoogle Scholar
  62. 62.
    W. Yang, B. Shao, T. Liu et al., Robust and mechanically and electrically self-healing hydrogel for efficient electromagnetic interference shielding. ACS Appl. Mater. Interface 10, 8245–8257 (2018)CrossRefGoogle Scholar
  63. 63.
    K. Jagatheesan, A. Ramasamy, A. Das, A. Basu, Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics—a review. Indian J. Fibre Text. 39, 329–342 (2014)Google Scholar
  64. 64.
    A. Joshi, S. Datar, Carbon nanostructure composite for electromagnetic interference shielding. Pramana-J. Phys. 84, 1099–1116 (2015)CrossRefGoogle Scholar
  65. 65.
    P. Saini, V. Choudhary, N. Vijayan, R.K. Kotnala, Improved electromagnetic interference shielding response of poly(aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J. Phys. Chem. C 116, 13403–13412 (2012)CrossRefGoogle Scholar
  66. 66.
    S.T. Hsiao, C.C.M. Ma, H.W. Tien et al., Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl. Mater. Interface 7, 2817–2826 (2015)CrossRefGoogle Scholar
  67. 67.
    B. Zhao, C.X. Zhao, R.S. Li, S.M. Hamidinejad, C.B. Park, Flexible, ultrathin, and high-efficiency electromagnetic shielding properties of poly(vinylidene fluoride)/carbon composite films. ACS Appl. Mater. Interface 9, 20873–20884 (2017)CrossRefGoogle Scholar
  68. 68.
    C.L. Huang, Y.J. Wang, Y.C. Fan, C.L. Hung, Y.C. Liu, The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: a comparative study. J. Mater. Sci. 52, 2560–2580 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations