Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16627–16635 | Cite as

Tailoring responsivity with engineered porous Cu2O hexapods architecture towards high-performance H2S gas-sensing

  • Juan Ding
  • Dandan Wang
  • Xinying Wang
  • Xiaoxiao Wang
  • Lecheng Tian
  • Yidan Zhang
  • Zhanhan Chai
  • Qingsong HuEmail author
Article
  • 44 Downloads

Abstract

We report on the development of a new type of nanoscale Cu2O hexapods with high H2S gas-sensing responsivity under low work temperature with engineering porous architectures through a rational synthesis design. The developed Cu2O hexapods show porous structure with outer diameters of 1–2 μm and the rodlike particles with mesoporous of 5–8 nm that constructed through the nanocrystals of 5–10 nm. The sensor based on porous Cu2O hexapods were synthesized and researched for the H2S-sensing properties. The response is 8.93 for the porous Cu2O hexapods, corresponding to the operating temperature 160 °C. By comparison, the response of the porous Cu2O hexapods is higher than the Cu2O hexapod during the detection range from 5 to 5000 ppm. The porous architecture could offer abundant active sites that promote the diffusion and adsorption procedure of the gas molecules. Furthermore, the response of porous Cu2O hexapods to 50 ppm H2S is 10.2 MΩ, the response time (τres) is within 0.11 s, and the recovery time (τrecov) is 31.0 s. Hence, using porous Cu2O hexapods architecture is beneficial to improve gas response, decrease the work temperature and shorten response time process.

Notes

Acknowledgements

This study was supported by State Scholarship Fund (201608440524); Guangdong provincial key platform and major scientific research projects of 2015 by the Education Department of Guangdong Province (2015KQNCX217); the third level: teaching and research type teacher program of Zhuhai College, Jilin University (4160102822); the critical technology of research and test theory and method of moving goals (2018KYHX06052).

Supplementary material

10854_2019_2042_MOESM1_ESM.docx (469 kb)
Supplementary material 1 (DOCX 468 kb)

References

  1. 1.
    A. Dey, Mater. Sci. Eng. B 229, 206 (2018)CrossRefGoogle Scholar
  2. 2.
    X.Y. She, Y. Shen, J.F. Wang, C.J. Jin, Light Sci. Appl. 8, 4 (2019)CrossRefGoogle Scholar
  3. 3.
    A.M. Azad, S.A. Akbar, S.G. Mhaisalkar, L.D. Birkefeld, K.S. Goto, J. Electrochem. Soc. 139, 3690 (1992)CrossRefGoogle Scholar
  4. 4.
    T. Allsop, R. Arif, R. Neal, K. Kalli, V. Kundrát, A. Rozhin, P. Culverhouse, D.J. Webb, Light Sci. Appl. 5, e16036 (2016)CrossRefGoogle Scholar
  5. 5.
    D.Y. Zhang, Z.Z. Dang, Sens. Transducers 195, 39 (2015)Google Scholar
  6. 6.
    J. Sithole, B.D. Ngom, S. Khamlich, E. Manikanadan, N. Manyala, M.L. Saboungi, D. Knoessen, R. Nemutudi, M. Maaza, Appl. Surf. Sci. 258, 7839 (2012)CrossRefGoogle Scholar
  7. 7.
    K. Lokesh, G. Kavitha, E. Manikandan, G.K. Mani, K. Kaviyarasu, J.B.B. Rayappan, R. Ladchumananandasivam, IEEE Sens. J. 16, 2477 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Laberty, J. Long, E. Lucas, K. Pettigrew, R. Stround, M. Doescher, Chem. Mater. 18, 50 (2006)CrossRefGoogle Scholar
  9. 9.
    C. Martinez, B. Hockey, C. Montgomery, S. Semncik, Langmuir 21, 7937 (2005)CrossRefGoogle Scholar
  10. 10.
    B. Gelloz, N. Koshida, J. Appl. Phys. 98, 123509 (2005)CrossRefGoogle Scholar
  11. 11.
    P. Sozzani, S. Bracco, A. Comotti, L. Ferretti, R. Simonutti, Angew. Chem. Int. Ed. 44, 1816 (2005)CrossRefGoogle Scholar
  12. 12.
    C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J. Jiang, J. Am. Chem. Soc. 132, 46 (2010)CrossRefGoogle Scholar
  13. 13.
    E. Manikandan, G. Kavitha, J. Kennedy, Ceram. Int. 40, 16065 (2014)CrossRefGoogle Scholar
  14. 14.
    E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaz, Mater. Lett. 131, 225 (2014)CrossRefGoogle Scholar
  15. 15.
    M.B. Pu, X.L. Ma, X. Li, Y.H. Guo, X.G. Luo, J. Mater. Chem. C 5, 4361 (2017)CrossRefGoogle Scholar
  16. 16.
    B.W. Mwakikunga, A. Forbes, E. Sideras-Haddad, M. Scriba, E. Manikandan, Nanoscale Res. Lett. 5, 389 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Manikandan, M.K.R. Moodley, S. Sinha, B.K. Panigrahi, R. Krishnan, N. Padhy, K.G.M. Nair, A.K. Tyagi, J. Nanosci. Nanotechnol. 10, 5602 (2010)CrossRefGoogle Scholar
  18. 18.
    E. Manikandan, J. Kennedy, G. Kavitha, K. Kaviyarasu, M. Maaza, B.K. Panigrahi, U.K. Mudali, J. Alloys Compd. 647, 141e145 (2015)CrossRefGoogle Scholar
  19. 19.
    Y.D. Zhu, Y.Y. Wang, G.T. Duan, H.W. Zhang, Y. Li, G.Q. Liu, L. Xu, W.P. Cai, Sens. Actuator B 221, 350 (2015)CrossRefGoogle Scholar
  20. 20.
    Y.W. Huang, W.M. Chen, S.C. Zhang, Z. Kuang, D.Y. Ao, N.R. Alkurd, W. Liu, W.Z. Shen, Z.J. Li, Appl. Surf. Sci. 351, 1025 (2015)CrossRefGoogle Scholar
  21. 21.
    A.A. Mane, S.A. Nikam, A.V. Moholkar, Mater. Chem. Phys. 216, 294 (2018)CrossRefGoogle Scholar
  22. 22.
    Y. Liang, Y. Yang, H. Zhou, C.W. Zou, K. Xu, X.F. Luo, T. Yu, Y.T. Liu, M.Q. Ding, C.L. Yuan, Appl. Surf. Sci. 471, 124 (2019)CrossRefGoogle Scholar
  23. 23.
    Y.W. Li, N. Luo, G. Sun, B. Zhang, H.H. Jin, L. Lin, H. Bala, J.L. Cao, Z.Y. Zhang, Y. Wang, Sens. Actuator B 287, 199 (2019)CrossRefGoogle Scholar
  24. 24.
    J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater. 18, 867 (2006)CrossRefGoogle Scholar
  25. 25.
    J. Liu, S. Wang, Q. Wang, B. Geng, Sens. Actuator B 143, 253 (2009)CrossRefGoogle Scholar
  26. 26.
    S. Shishiyanu, T. Shishiyanu, O. Lupan, Sens. Actuators B 13, 468 (2005)Google Scholar
  27. 27.
    H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, B. Yu, Adv. Funct. Mater. 17, 2766 (2007)CrossRefGoogle Scholar
  28. 28.
    Y. Sui, W. Fu, Y. Zeng, H. Yang, Y. Zhang, H. Chen, Y. Li, M. Li, G. Zou, Angew. Chem. Int. Ed. 49, 4282 (2010)CrossRefGoogle Scholar
  29. 29.
    Y. Sui, Y. Zeng, W. Zheng, B. Liu, B. Zou, H. Yang, Sens. Actuators B 171, 135 (2012)CrossRefGoogle Scholar
  30. 30.
    Y. Sui, Y. Zeng, L. Fu, W. Zheng, D. Li, B. Liu, B. Zou, RSC Adv. 3, 18651 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Zeng, T. Zhang, L.J. Wang, M.H. Kang, H.T. Fan, R. Wang, Y. He, Sens. Actuators B 140, 73 (2009)CrossRefGoogle Scholar
  32. 32.
    J.Q. Xu, X.H. Jia, X.D. Lou, G.X. Xi, J.J. Han, Q.H. Gao, Sens. Actuators B 120, 694 (2007)CrossRefGoogle Scholar
  33. 33.
    H.T. Fan, Y. Zeng, H.B. Yang, X.J. Zheng, L. Liu, T. Zhang, Acta Phys. Chim. Sin. 24, 1292 (2008)Google Scholar
  34. 34.
    J. Jahng, H. Yang, E.S. Lee, Light Sci. Appl. 7, 73 (2018)CrossRefGoogle Scholar
  35. 35.
    G.Z. Xing, D.D. Wang, C.-J. Cheng, M. He, S. Li, T. Wu, Appl. Phys. Lett. 103, 022402 (2013)CrossRefGoogle Scholar
  36. 36.
    X.Y. Chen, Z. Tian, Chin. Opt. 10, 86 (2017)CrossRefGoogle Scholar
  37. 37.
    X. Zhang, S. Li, L. Cai, X.Z. Tian, Q. Zhang, X.Y. Qi, W.B. Zhou, N. Zhang, F. Yang, Q.X. Fan, Y.C. Wang, H.P. Liu, X.D. Bai, W.Y. Zhou, S.S. Xie, Light Sci. Appl. 4, 318 (2015)CrossRefGoogle Scholar
  38. 38.
    J.F. Wu, H.T. Wang, Z.W. Su, M.H. Zhang, X.D. Hu, Y.J. Wang, Z. Wang, B. Zhong, W.W. Zhou, J.P. Liu, G.Z. Xing, ACS Appl. Mater. Interfaces 9, 38745 (2017)CrossRefGoogle Scholar
  39. 39.
    X. Bao, Y. Yuan, J.Q. Chen, B.H. Zhang, D. Li, D. Zhou, P.T. Jing, G.Y. Xu, Y.L. Wang, K. Holá, D. Shen, C.F. Wu, L. Song, C.B. Liu, R. Zbořil, S.N. Qu, Light Sci Appl. 7, 91 (2018)CrossRefGoogle Scholar
  40. 40.
    T. Li, M.L. Zhang, F. Wang, D.M. Zhang, G.P. Wang, Chin. Opt. 10, 219 (2017)CrossRefGoogle Scholar
  41. 41.
    D. Qu, M. Zheng, J. Li, Z.G. Xie, Z.C. Sun, Light Sci. Appl. 4, 364 (2015)CrossRefGoogle Scholar
  42. 42.
    D.D. Wang, G.Z. Xing, F. Yan, Y.S. Yan, S. Li, Appl. Phys. Lett. 104, 022412 (2014)CrossRefGoogle Scholar
  43. 43.
    Y.C. Li, H.B. Xin, H.X. Lei, L.L. Liu, Y.Z. Li, Y. Zhang, B.J. Li, Light Sci. Appl. 5, e16176 (2016)CrossRefGoogle Scholar
  44. 44.
    D.D. Wang, Q. Chen, G.Z. Xing, J.B. Yi, S.R. Bakaul, J. Ding, J.L. Wang, T. Wu, Nano Lett. 12, 3994 (2012)CrossRefGoogle Scholar
  45. 45.
    D.D. Wang, W.L. Wang, Y.M. Huang, A. Lek, J. Lam, Z.H. Mai, AIP Adv. 4, 077124 (2014)CrossRefGoogle Scholar
  46. 46.
    G.Z. Xing, D.D. Wang, J.B. Yi, L.L. Yang, M. Gao, M. He, J.H. Yang, J. Ding, T.C. Sum, T. Wu, Appl. Phys. Lett. 96, 112511 (2010)CrossRefGoogle Scholar
  47. 47.
    P.H. Huang, H.Y. Lai, Nanotechnology. 21, 255701 (2010)CrossRefGoogle Scholar
  48. 48.
    X.B. Cheng, J.L. Zhang, T. Ding, Z.Y. Wei, H.Q. Li, Z.S. Wang, Light Sci. Appl. 2, e80 (2013)CrossRefGoogle Scholar
  49. 49.
    G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Phys. Rev. B. 79, 174406 (2009)CrossRefGoogle Scholar
  50. 50.
    G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, C.H.A. Huan, T. Wu, Adv. Mater. 20, 3521 (2008)CrossRefGoogle Scholar
  51. 51.
    L. Li, W. Guo, Y.Z. Yan, S. Lee, T. Wang, Light Sci. Appl. 2, e104 (2013)CrossRefGoogle Scholar
  52. 52.
    J.Y. Ho, M.H. Huang, J. Phys. Chem. C. 113, 14159 (2009)CrossRefGoogle Scholar
  53. 53.
    M.Y. Wu, Q.S. Meng, Y. Chen, Y.Y. Du, L.X. Zhang, Y.P. Li, L.L. Zhang, J.L. Shi, Adv. Mater. 27, 215 (2015)CrossRefGoogle Scholar
  54. 54.
    J.H. Hu, R.B. Jiang, H. Zhang, Y.Z. Guo, J. Wang, J.F. Wang, Nanoscale. 10, 18473 (2018)CrossRefGoogle Scholar
  55. 55.
    W.X. Niu, Z.Y. Li, L.H. Shi, X.Q. Liu, H.J. Li, S. Han, J. Chen, G.B. Xu, Cryst. Growth Des. 8, 4440 (2008)CrossRefGoogle Scholar
  56. 56.
    Y.Y. Ma, W.Y. Li, E.C. Cho, Z.Y. Li, T.K. Yu, J. Zeng, Z.X. Xie, Y.N. Xia, ACS Nano 4, 6725 (2010)CrossRefGoogle Scholar
  57. 57.
    N. Yamazoe, G. Sakai, K. Shimanoe, Catal. Surv. Asia 7, 63 (2003)CrossRefGoogle Scholar
  58. 58.
    M. Egashira, Y. Shimizu, Y. Takao, S. Sako, Sens. Actuators B 35, 62 (1996)CrossRefGoogle Scholar
  59. 59.
    J.H. Lee, Sens. Actuators B 140, 319 (2009)CrossRefGoogle Scholar
  60. 60.
    J. Liu, S.Z. Wang, Q. Wang, B.Y. Geng, Sens. Actuators B 143, 253 (2009)CrossRefGoogle Scholar
  61. 61.
    V.X. Hien, J.L. You, K.M. Jo, S.Y. Kim, J.H. Lee, J.J. Kim, Y.W. Heo, Sens. Actuators B 202, 330 (2014)CrossRefGoogle Scholar
  62. 62.
    A. Mirzaei, S.S. Kim, H.W. Kim, J. Hazard. Mater. 357, 314 (2018)CrossRefGoogle Scholar
  63. 63.
    Z.J. Li, H. Li, Z.L. Wu, M.K. Wang, J.T. Luo, H. Torun, P.A. Hu, C. Yang, M. Grundmann, X.T. Liu, Y.Q. Fu, Mater. Horiz. 6, 470 (2019)CrossRefGoogle Scholar
  64. 64.
    P. Rai, S.M. Majhi, Y.T. Yu, J.H. Lee, RSC Adv. 5, 17653 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zhuhai CollegeJilin UniversityZhuhaiChina
  2. 2.GLOBALFOUNDRIES (Singapore) Pte. LtdSingaporeSingapore
  3. 3.School of Engineering and ArchitectureNortheast Electric Power UniversityJilinChina
  4. 4.College of PhysicsJilin UniversityChangchunChina
  5. 5.Department of Chemistry and Chemical EngineeringChangchun University of Science and TechnologyChangchunChina
  6. 6.College of Electrical EngineeringNortheast Electric Power UniversityJilinChina
  7. 7.School of Information and Control EngineeringChina University of Mining & TechnologyXuzhouChina

Personalised recommendations