Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16621–16626 | Cite as

Dielectric ceramic composites with controllable thermal expansion: SrTiO3/Zr2P2WO12

  • Mengjie Yang
  • Hui Wang
  • Juan Guo
  • Shuangshuang Wei
  • Xinbo Tang
  • Yajie Jiao
  • Mingju ChaoEmail author
  • Dongzhe TianEmail author
  • Erjun Liang


SrTiO3/Zr2P2WO12 dielectric ceramic composites with controllable coefficient of thermal expansion (CTE) were prepared by using the solid-state method, and X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) spectrum were used to analyze its composition and microstructure. The coefficients of thermal expansion and dielectric properties were measured with a dilatometer and precision impedance analyzer, respectively. Results showed that the solid-state method was effective in obtaining composites with controllable thermal expansion coefficients (9.23–2.37) × 10−6/K and dielectric constants (17.15–39.56, 1 MHz) by combining the negative thermal expansion materials Zr2P2WO12 and SrTiO3.



The authors acknowledge the financial support given by the National Natural Science Foundation of China (11574276), and the key Natural Science Project of Henan Province (142102210073).


  1. 1.
    A. Sanson, J. Chen, Towards the control of thermal expansion: from 1996 to today. Front. Chem. 7, 284 (2019)CrossRefGoogle Scholar
  2. 2.
    T.A. Mary, J.S.O. Evans, A.W. Sleifht, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8. Science 272, 90–92 (1996)CrossRefGoogle Scholar
  3. 3.
    L.J. Fu, M.J. Chao, H. Chen, X.S. Liu, Y.M. Liu, J.M. Yu, E.J. Liang, Y.C. Li, X. Xiao, Negative thermal expansion property of Er0.7Sr0.3Ni O3−δ. Phys. Lett. A 378, 1909–1912 (2014)CrossRefGoogle Scholar
  4. 4.
    Y.G. Cheng, Y. Liang, X.H. Ge, X.S. Liu, B.H. Yuan, J. Guo, M.J. Chao, E.J. Liang, A novel material of HfScMo2VO12 with negative thermal expansion and intense white-light emission. RSC Adv. 6, 53657–53661 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Zhou, Q. Zhang, S.Y. Liu, T. Zhou, J.R. Jokisaari, G.H. Wu, Microstructure and thermal expansion analysis of porous ZrW2O8/Al composite. J. Alloys Compd. 670, 182–187 (2016)CrossRefGoogle Scholar
  6. 6.
    X.H. Ge, Y.C. Mao, X.S. Liu, Y.G. Cheng, B.H. Yuan, M.J. Chao, E.J. Liang, Negative thermal expansion and broad band photoluminescence in a novel material of ZrScMo2VO12. Sci. Rep. 6, 24832–24839 (2016)CrossRefGoogle Scholar
  7. 7.
    M.D. Zhang, Y.C. Mao, J. Guo, W.J. Zhou, M.J. Chao, N. Zhang, M.J. Yang, X.H. Kong, X.S. Kong, E.J. Liang, A novel negative thermal expansion material of Zr0.70V1.33Mo0.67O6.73. RSC Adv. 7, 3934–3940 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Lind, Two decades of negative thermal expansion research: where do we stand? Materials 5, 1125–1154 (2012)CrossRefGoogle Scholar
  9. 9.
    E.J. Liang, Negative thermal expansion material and their application: a survey of recent patents. Recent Pat. Mater. Sci. 3, 106–128 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Chen, L. Hu, J.X. Deng, X.R. Xing, Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chem. Soc. Rev. 44, 3522 (2015)CrossRefGoogle Scholar
  11. 11.
    Z. Peng, Y.Z. Sun, L.M. Peng, Hydrothermal synthesis of ZrW2O8 nanorods and its application in ZrW2O8/Cu composites with controllable thermal expansion coefficients. Mater. Design 54, 989–994 (2014)CrossRefGoogle Scholar
  12. 12.
    X. Yang, J. Xu, H. Li, X. Cheng, X. Yan, In situ synthesis of ZrO2/ZrW2O8 composites with near-zero thermal expansion. J. Am. Ceram. Soc. 90(6), 1953–1955 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Yang, Y.S. Yang, Q.Q. Liu et al., Preparation of negative thermal expansion ZrW2O8 powders and its application in polyimide/ZrW2O8 composites. J. Mater. Sci. Technol. 26, 665–668 (2010)CrossRefGoogle Scholar
  14. 14.
    R. Shang, Q.L. Hu, X.S. Liu, E.J. Liang, B. Yuan, M.J. Chao, Effect of MgO and PVA on the synthesis and properties of negative thermal expansion ceramics of Zr2(WO4)(PO4)2. Int. J. Appl. Ceram. Technol. 10, 849–856 (2013)CrossRefGoogle Scholar
  15. 15.
    X.S. Liu, J.Q. Wang, C.Z. Fan, R. Shang, F.X. Cheng, B.H. Yuan, W.B. Song, Y.G. Cheng, E.J. Liang, M.J. Chao, Control of reaction pathways for rapid synthesis of negative thermal expansion ceramic Zr2P2WO12 with uniform microstructure. Int. J. Appl. Ceram. Technol. 12(S2), E28–E33 (2015)CrossRefGoogle Scholar
  16. 16.
    Z.P. Zhang, W.K. Sun, H.F. Liu, G.H. Xie, X.B. Chen, X.H. Zeng, Synthesis of Zr2WP2O12/ZrO2 composites with adjustable thermal expansion. Front. Chem. 5, 105 (2017)CrossRefGoogle Scholar
  17. 17.
    X.S. Liu, F.X. Cheng, J.Q. Wang, W.B. Song, B.H. Yuan, E.J. Liang, The control of thermal expansion and impedance of Al–Zr2(WO4)(PO4)2 nano-cermets for near-zero-strain Al alloy and fine electrical components. J. Alloys Compd. 553, 1–7 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Sasikumar, R. Saravanan, S. Saravanakumar, K. Aravinth, Charge correlation of ferroelectric and piezoelectric properties of (1 − x)(Na0.5Bi0.5)TiO3–xBaTiO3 lead-free ceramic solid solution. J. Mater. Sci. 28(13), 9950–9963 (2017)Google Scholar
  19. 19.
    H.S. Mohanty, A. Kumar, B. Sahoo, P.K. Kurliya, D.K. Pradhan, Impedance spectroscopic study on microwave sintered (1 − x)Na0.5Bi0.5Ti O3–xBaTiO3 ceramics. J. Mater. Sci. 29(8), 6966–6977 (2018)Google Scholar
  20. 20.
    H.S. Mohanty, T. Dam, H. Borkar, D.K. Pradhan, K.K. Mishra, A. Kumar, B. Sahoo, P.K. Kulriya, C. Cazorla, J.F. Scott, D.K. Pradhan, Structural transformations and physical properties of (1 − x)Na0.5Bi0.5TiO3–xBaTiO3 solid solutions near morphotropic phase boundary. J. Phys. 31, 075401 (2019)Google Scholar
  21. 21.
    Y.Q. Li, Study on structure optimization and dielectric properties in SrTiO3-based energy storage ceramics [D]. Wuhan University of Technology, (2011)Google Scholar
  22. 22.
    Z.J. Wang, M.H. Cao, Z.H. Yao, Z. Song, G.Y. Li, W. Hu, H. Hao, H.X. Liu, Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram. Int. 40, 14127–14132 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Tkach, O. Okhay, A. Almeidac, P.M. Vilarinhoa, Giant dielectric permittivity and high tunability in Y-doped SrTiO3 ceramics tailored by sintering atmosphere. Acta Mater. 130, 249–260 (2017)CrossRefGoogle Scholar
  24. 24.
    F.Z. Zeng, M.H. Cao, L. Zhang, M. Liu, H. Hao, Z.H. Yao, H.X. Liu, Microstructure and dielectric properties of SrTiO3 ceramics by controlled growth of silica shells on SrTiO3 nanoparticles. Ceram. Int. 43, 7710–7716 (2017)CrossRefGoogle Scholar
  25. 25.
    S.L. Chen, L.X. Li, S.H. Yu, H.R. Zheng, Z. Sun, High dielectric constant and high-Q in microwave ceramics of SrTiO3 Co-doped with aluminum and niobium. J. Am. Ceram. Soc. 101, 1835–1840 (2018)CrossRefGoogle Scholar
  26. 26.
    W.J. Bian, X.C. Lu, Y.Y. Li, C.F. Min, H.K. Zhu, Z.X. Fu, Q.T. Zhang, Influence of Nd doping on microwave dielectric properties of SrTiO3 ceramics. J. Mater. Sci. 29, 2743–2747 (2018)Google Scholar
  27. 27.
    Z.F. Fu, J.L. Ma, P. Liu, Y. Liu, Novel temperature stable Li2Mg3TiO6–SrTiO3 composite ceramics with high Q for LTCC applications. Mater. Chem. Phys. 200, 264–269 (2017)CrossRefGoogle Scholar
  28. 28.
    C.E. Huang, X.R. Lu, M.Y. Lu, Y. Huan, Effect of CaO/SnO2 additives on the microstructure and microwave dielectric properties of SrTiO3–LaAlO3 ceramics. Ceram. Int. 43, 10624–10627 (2017)CrossRefGoogle Scholar
  29. 29.
    D. Popescu, B. Popescu, G. Jegert, S. Schmelze, Feasibility study of SrRuO3/SrTiO3/SrRuO3 thin film capacitors in DRAM applications. IEEE Trans. Electron Devices 61, 2130–2135 (2014)CrossRefGoogle Scholar
  30. 30.
    E. Herrmann, A. Rush, T. Bailey, R. Jha, Gate controlled three-terminal metal oxide memristor. IEEE Electron Device Lett. 39, 500–503 (2018)CrossRefGoogle Scholar
  31. 31.
    H.M. Yau, Z.N. Xi, X.X. Chen, Z. Wen, G. Wu, J.Y. Dai, Dynamic strain-induced giant electroresistance and erasing effect in ultrathin ferroelectric tunnel-junction memory. Phys. Rev. B 95, 214304 (2017)CrossRefGoogle Scholar
  32. 32.
    S.J. Cheon, J.H. Park, J.Y. Park, Highly Miniaturized and performed UWB band pass filter embedded into PCB with SrTiO3 composite layer. J. Electric. Eng. Technol. 7, 582–588 (2012)CrossRefGoogle Scholar
  33. 33.
    J.F.J.V. Zanten, G.A. Schuerink, A.H.J. Tullemans, R. Legtenberg, W.W. Wits, Method to determine thermoelastic material properties of constituent and copper-patterned layers of multilayer printed circuit boards. J. Mater. Sci. 29, 4900–4914 (2018)Google Scholar
  34. 34.
    J.I. Tani, M. Takahashi, H. Kido, Fabrication and thermal expansion properties of ZrW2O8/Zr2WP2O12 composites. J. Eur. Ceram. Soc. 30, 1483–1488 (2010)CrossRefGoogle Scholar
  35. 35.
    B. Feng, Y.C. Xin, Z. Sun, H.H. Yu, J. Wang, Q. Liu, On the rule of mixtures for bimetal composites. Mater. Sci. Eng. A 704, 173–180 (2017)CrossRefGoogle Scholar
  36. 36.
    Q.Q. Liu, C.Y. Fan, G.D. Wu, Y.H. Zhao, X.J. Sun, X.N. Cheng, J.T. Shen, Y.M. Hu, In-situ synthesis of Sc2W3O12/YSZ ceramic composites with controllable thermal expansion. Ceram. Int. 41, 8267–8271 (2015)CrossRefGoogle Scholar
  37. 37.
    Q.R. Wu, B.X. Wen, Studies on temperature dependence of thermal conductivity and linear expansion for SiC material. J. S. China Univ. Technol. (Nat. Sci.) 24, 11–15 (1996)Google Scholar
  38. 38.
    M. Orrhede, R. Tolani, K. Salama, Elastic constants and thermal expansion of aluminum–SiC metal–matrix composites. Res. Nondestruct. Eval. 8, 23–37 (1996)CrossRefGoogle Scholar
  39. 39.
    W. Li, R. Schwartz, Maxwell-Wagner relaxations and their contributions to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B 75, 012104 (2007)CrossRefGoogle Scholar
  40. 40.
    J.L. Li, F. Li, X.H. Zhu, D.B. Lin, Q.F. Li, W.H. Liu, Z. Xu, Colossal dielectric permittivity in hydrogen-reduced rutile TiO2 crystals. J. Alloys Compd. 692, 375–380 (2017)CrossRefGoogle Scholar
  41. 41.
    G.K. Sidhu, R. Kumar, Role of anionic and cationic surfactants on the structural and dielectric properties of ZrO2 nanoparticles. Appl. Surf. Sci. 392, 598–607 (2017)CrossRefGoogle Scholar
  42. 42.
    S. Khan, S. Zulqar, T. Khan, R. Khan, M. Khan, S.A. Khattak, G. Khan, Investigation of structural, optical, electrochemical and dielectric properties of SnO2/GO nanocomposite. J. Mater. Sci. (2019). Google Scholar
  43. 43.
    C.L. Huang, J.J. Wang, C.Y. Huang, Microwave dielectric properties of sintered alumina using nano-scaled powders of alumina and TiO2. J. Am. Ceram. Soc. 90, 1487–1493 (2007)CrossRefGoogle Scholar
  44. 44.
    Q. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth, P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka, Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 6, 1176–1191 (1994)CrossRefGoogle Scholar
  45. 45.
    O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Space–charge relaxation in perovskites. Phys. Rev. B 49, 7868–7873 (1994)CrossRefGoogle Scholar
  46. 46.
    W.F. Jin, et al., Dielectric Physics, Machine PRESS, Xi’an, ISBN: 9787111053736 (1997)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mengjie Yang
    • 1
  • Hui Wang
    • 1
  • Juan Guo
    • 1
  • Shuangshuang Wei
    • 1
  • Xinbo Tang
    • 1
  • Yajie Jiao
    • 1
  • Mingju Chao
    • 1
    Email author
  • Dongzhe Tian
    • 2
    Email author
  • Erjun Liang
    • 1
  1. 1.Key Laboratory of Materials Physics of Ministry of Education, School of Physics and EngineeringZhengzhou UniversityZhengzhouChina
  2. 2.The 27th Research Institute of China Electronic Technology Group CorporationZhengzhouChina

Personalised recommendations