Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16613–16620 | Cite as

Effects of Fe2O3 addition on the electrical properties of SDC solid electrolyte ceramics

  • Jihai ChengEmail author
  • Changan Tian
  • Jie Yang
Article
  • 16 Downloads

Abstract

Ceria-based electrolyte powders consisting of Fe2O3 and Sm2O3 double-doped ceria (Ce0.8Sm0.2−xFexO2−δ) were synthesized by a sol–gel method. The structure and electrochemical characters of the electrolyte materials have been studied. The phase formation of precursor powders was studied by the X-ray diffraction analysis (XRD). Microstructural and sinterability measurements were carried out on the sintered electrolyte discs. Electrochemical impedance spectroscopy (EIS) was used for estimate the electrochemical properties. The results displayed that crystalline cubic fluorite structured is formed after calcined at 700 °C. The electrochemical analysis results showed that the electrical properties of Ce0.8Sm0.2O1.9 (SDC) electrolytes substituted with certain Fe2O3 were superior and a total conductivity of 0.0263 S cm−1 could be obtained in the x = 0.1 sample. Therefore, it was concluded that co-doped with Fe2O3 and Sm2O3 could enhance the electrical conductivities of CeO2-based solid electrolyte, indicating that it is a potential electrolyte for SOFCs.

Notes

Acknowledgements

The work was kindly supported by the Natural Science Foundation of Colleges and Universities in Anhui Province (Grant Nos. KJ2016A591, KJ2018A0549) and the Nature Science Foundation of Anhui Province of China (No. 1708085ME112).

References

  1. 1.
    S. Prakash, B. Parthasarathi, S. Kumar, S.T. Aruna, Microstructure and electrical properties of plasma sprayed Gd 0.15 Ce 0.85 O 2 − δ coatings from solution combustion synthesized flowable powders. J. Eur. Ceram. Soc. 37, 271–279 (2017)CrossRefGoogle Scholar
  2. 2.
    C. Yao, J. Meng, X. Liu, X. Zhang, X. Liu, F. Meng, X. Wu, J. Meng, Enhanced ionic conductivity in Gd-doped ceria and (Li/Na)2SO4 composite electrolytes for solid oxide fuel cells. Solid State Sci. 49, 90–96 (2015)CrossRefGoogle Scholar
  3. 3.
    K.C. Anjaneya, G.P. Nayaka, J. Manjanna, V.M. Ashwin Kumar, G. Govindaraj, K.N. Ganesha, Investigation on the Sr-doped ceria Ce1 − xSrxO2−δ (x = 0.05–0.2) as an electrolyte for intermediate temperature SOFC. J. Alloys Compd. 598, 33–40 (2014)CrossRefGoogle Scholar
  4. 4.
    A. Maheshwari, H.-D. Wiemhöfer, Sr2+–Gd3+ co-doped CeO2: a cost-effective variant for IT-SOFC electrolytes. Ceram. Int. 41, 9122–9130 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Dudek, M. Mosiałek, Utility of Ce0.8M0.2O1.9, Ce0.8M0.15Y0.05O1.9, M = Gd, Sm powders synthesized by aerosol decomposition method in solid oxide fuel cell technology. Electrochim. Acta 104, 339–347 (2013)CrossRefGoogle Scholar
  6. 6.
    T. Somekawa, Y. Matsuzaki, Y. Tachikawa, S. Taniguchi, K. Sasaki, Study of the solid-state reaction at the interface between lanthanoid-doped ceria and yttria-stabilized zirconia for solid-oxide fuel cell applications. Solid State Ion. 282, 1–6 (2015)CrossRefGoogle Scholar
  7. 7.
    N.C. Martins, S. Rajesh, F.M. Marques, Synthesis and electrochemical assessment of Ce0.5Yb0.5O1.75 ceramics and derived composite electrolytes. Mater. Res. Bull. 70, 449–455 (2015)CrossRefGoogle Scholar
  8. 8.
    L. Spiridigliozzi, M. Biesuz, G. Dell’Agli, E. Di Bartolomeo, F. Zurlo, V.M. Sglavo, Microstructural and electrical investigation of flash-sintered Gd/Sm-doped ceria. J. Mater. Sci. 52, 7479–7488 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Rockenhäuser, B. Butz, N. Schichtel, J. Janek, R. Oberacker, M.J. Hoffmann, D. Gerthsen, Microstructure evolution and cation interdiffusion in thin Gd2O3 films on CeO2 substrates. J. Eur. Ceram. Soc. 34, 1235–1242 (2014)CrossRefGoogle Scholar
  10. 10.
    H. Liu, J. Huang, D. Zhao, H. Yang, T. Zhang, Improving the electrical property of CeO2-containing sealing glass–ceramics for solid oxide fuel cell applications: effect of HfO2. J. Eur. Ceram. Soc. 36, 917–923 (2016)CrossRefGoogle Scholar
  11. 11.
    E.O. Oh, C.M. Whang, Y.R. Lee, S.Y. Park, D.H. Prasad, K.J. Yoon, J.W. Son, J.H. Lee, H.W. Lee, Extremely thin bilayer electrolyte for solid oxide fuel cells (SOFCs) fabricated by chemical solution deposition (CSD). Adv. Mater. 24, 3373–3377 (2012)CrossRefGoogle Scholar
  12. 12.
    S. Dutta, A. Nandy, A. Dutta, S.K. Pradhan, Structure and microstructure dependent ionic conductivity in 10 mol% Dy2O3 doped CeO2 nanoparticles synthesized by mechanical alloying. Mater. Res. Bull. 73, 446–451 (2016)CrossRefGoogle Scholar
  13. 13.
    J.-E. Hong, S. Ida, T. Ishihara, Decreased sintering temperature of anode-supported solid oxide fuel cells with La-doped CeO2 and Sr- and Mg-doped LaGaO3 films by Co addition. J. Power Sources 259, 282–288 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Tinwala, P. Shah, K. Siddhapara, D. Shah, J. Menghani, Investigation of ionic conductivity of lanthanum cerium oxide nano crystalline powder synthesized by co precipitation method. J. Cryst. Growth 452, 54–56 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Guan, S. Le, X. Zhu, S. He, K. Sun, Densification and grain growth behavior study of trivalent MO1.5 (M = Gd, Bi) doped ceria systems. J. Eur. Ceram. Soc. 35, 2815–2821 (2015)CrossRefGoogle Scholar
  16. 16.
    K.C. Anjaneya, G.P. Nayaka, J. Manjanna, G. Govindaraj, K.N. Ganesha, Preparation and characterization of Ce1 − xGdxO2 − δ (x = 0.1–0.3) as solid electrolyte for intermediate temperature SOFC. J. Alloys Compd. 578, 53–59 (2013)CrossRefGoogle Scholar
  17. 17.
    B.C.H. Steele, Appraisal of Ce1 − yGdyO2 − y/2 electrolytes for IT-SOFC operation at 500°C. Solid State Ion. 129, 95–110 (2000)CrossRefGoogle Scholar
  18. 18.
    J.L.M. Rupp, A. Infortuna, L.J. Gauckler, Microstrain and self-limited grain growth in nanocrystalline ceria ceramics. Acta Mater. 54, 1721–1730 (2006)CrossRefGoogle Scholar
  19. 19.
    S.A. Muhammed Ali, M. Anwar, A.M. Abdalla, M.R. Somalu, A. Muchtar, Ce0.80Sm0.10Ba0.05Er0.05O2 − δ multi-doped ceria electrolyte for intermediate temperature solid oxide fuel cells. Ceram. Int. 43, 1265–1271 (2017)CrossRefGoogle Scholar
  20. 20.
    E.Y. Pikalova, A.A. Murashkina, V.I. Maragou, A.K. Demin, V.N. Strekalovsky, P.E. Tsiakaras, CeO2 based materials doped with lanthanides for applications in intermediate temperature electrochemical devices. Int. J. Hydrog. Energy 36, 6175–6183 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, C. Decès-Petit, S. Yick, M. Robertson, O. Kesler, R. Maric, D. Ghosh, A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte. J. Power Sources 162, 480–485 (2006)CrossRefGoogle Scholar
  22. 22.
    D.P. Fagg, V.V. Kharton, J.R. Frade, Transport in ceria electrolytes modified with sintering aids: effects on oxygen reduction kinetics. J. Solid State Electrochem. 8, 618–625 (2004)CrossRefGoogle Scholar
  23. 23.
    W. Zając, L. Suescun, K. Świerczek, J. Molenda, Structural and electrical properties of grain boundaries in Ce0.85Gd0.15O1.925 solid electrolyte modified by addition of transition metal ions. J. Power Sources 194, 2–9 (2009)CrossRefGoogle Scholar
  24. 24.
    T.S. Zhang, J. Ma, L.B. Kong, P. Hing, Y.J. Leng, S.H. Chan, J.A. Kilner, Sinterability and ionic conductivity of coprecipitated Ce0.8Gd0.2O2 − δ powders treated via a high-energy ball-milling process. J. Power Sources 124, 26–33 (2003)CrossRefGoogle Scholar
  25. 25.
    H.J. Park, G.M. Choi, The electrical conductivity and oxygen permeation of ceria with alumina addition at high temperature. Solid State Ion. 178, 1746–1755 (2008)CrossRefGoogle Scholar
  26. 26.
    D. Xu, X. Liu, S. Xu, D. Yan, L. Pei, C. Zhu, D. Wang, W. Su, Fabrication and performance of Ce0.85Sm0.15O1.925–Fe2O3 electrolytes in IT-SOFCs. Solid State Ion. 192, 510–514 (2011)CrossRefGoogle Scholar
  27. 27.
    T.S. Zhang, J. Ma, S.H. Chan, J.A. Kilner, Grain boundary conduction of Ce0.9Gd0.1O2 − δ ceramics derived from oxalate coprecipitation: effects of Fe loading and sintering temperature. Solid State Ion. 176, 377–384 (2005)CrossRefGoogle Scholar
  28. 28.
    Y.-C. Wu, Y.-Y. Liao, Effect of Ca2+ and Sr2+ doping on the microstructure and cell performance of samaria-doped ceria electrolytes used in solid oxide fuel cells. Int. J. Hydrog. Energy 41, 13591–13602 (2016)CrossRefGoogle Scholar
  29. 29.
    K.C. Anjaneya, J. Manjanna, G.P. Nayaka, V.M. Ashwin Kumar, G. Govindaraj, K.N. Ganesha, Citrate-complexation synthesized Ce0.85Gd0.15O2 − δ (GDC15) as solid electrolyte for intermediate temperature SOFC. Phys. B 447, 51–55 (2014)CrossRefGoogle Scholar
  30. 30.
    G. Chen, H. Kishimoto, K. Yamaji, K. Kuramoto, M. Gong, X. Liu, G. Hackett, K. Gerdes, T. Horita, Chemical reaction mechanisms between Y2O3 stabilized ZrO2 and Gd doped CeO2 with PH3 in coal syngas. J. Power Sources 268, 904–910 (2014)CrossRefGoogle Scholar
  31. 31.
    C.G.M. Lima, T.H. Santos, J.P.F. Grilo, R.P.S. Dutra, R.M. Nascimento, S. Rajesh, F.C. Fonseca, D.A. Macedo, Synthesis and properties of CuO-doped Ce0.9Gd0.1O2 − δ electrolytes for SOFCs. Ceram. Int. 41, 4161–4168 (2015)CrossRefGoogle Scholar
  32. 32.
    J. Cheng, W. Bao, C. Han, W. Cao, A novel electrolyte for intermediate solid oxide fuel cells. J. Power Sources 195, 1849–1853 (2010)CrossRefGoogle Scholar
  33. 33.
    B. Matović, M. Stojmenović, J. Pantić, A. Varela, M. Žunić, N. Jiraborvornpongsa, T. Yano, Electrical and microstructural properties of Yb-doped CeO2. J. Asian Ceram. Soc. 2, 117–122 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Guan, S. Le, S. He, X. Zhu, T. Liu, K. Sun, Densification behavior and space charge blocking effect of Bi2O3 and Gd2O3 Co-doped CeO2 as electrolyte for solid oxide fuel cells. Electrochim. Acta 161, 129–136 (2015)CrossRefGoogle Scholar
  35. 35.
    Y.-C. Wu, Y.-Y. Liao, Effect of Ca2 + and Sr2 + doping on the microstructure and cell performance of samaria-doped ceria electrolytes used in solid oxide fuel cells. Int. J. Hydrog. Energy 41, 13591–13602 (2016)CrossRefGoogle Scholar
  36. 36.
    N.K. Singh, P. Singh, M.K. Singh, D. Kumar, O. Parkash, Auto-combustion synthesis and properties of Ce0.85Gd0.15O1.925 for intermediate temperature solid oxide fuel cells electrolyte. Solid State Ion. 192, 431–434 (2011)CrossRefGoogle Scholar
  37. 37.
    S. Kumar, S. Gautam, T.K. Song, K.H. Chae, K.W. Jang, S.S. Kim, Electronic structure study of Co doped CeO2 nanoparticles using X-ray absorption fine structure spectroscopy. J. Alloys Compd. 611, 329–334 (2014)CrossRefGoogle Scholar
  38. 38.
    K. Huang, J.B. Goodenough, Performance Characterization Techniques for a Solid Oxide Fuel Cell (SOFC) and its Components[M] (Elsevier, Amsterdam, 2009)CrossRefGoogle Scholar
  39. 39.
    E. Drożdż, J. Wyrwa, K. Schneider, M. Rękas, Electrical properties of silica-doped 3 mol% yttria-stabilized tetragonal zirconia. J. Mater. Sci. 52, 674–685 (2016)Google Scholar
  40. 40.
    R.K. Lenka, T. Mahata, A.K. Tyagi, P.K. Sinha, Influence of grain size on the bulk and grain boundary ion conduction behavior in gadolinia-doped ceria. Solid State Ion. 181, 262–267 (2010)CrossRefGoogle Scholar
  41. 41.
    D. Zhou, Y. Xia, J. Zhu, W. Guo, J. Meng, Preparation and electrical properties of new oxide ion conductors Ce6 − xGdxMoO15 − δ (0.0 ≤ x≤1.8). J. Am. Ceram. Soc. 92, 1042–1046 (2009)CrossRefGoogle Scholar
  42. 42.
    B. Ji, C. Tian, C. Wang, T. Wu, J. Xie, M. Li, Preparation and characterization of Ce0.8Y0.2 − xCuxO2 − δ as electrolyte for intermediate temperature solid oxide fuel cells. J. Power Sources 278, 420–429 (2015)CrossRefGoogle Scholar
  43. 43.
    Y. Zheng, M. Zhou, L. Ge, S. Li, H. Chen, L. Guo, Effect of Fe2O3 on Sm-doped ceria system solid electrolyte for IT-SOFCs. J. Alloys Compd. 509, 546–550 (2011)CrossRefGoogle Scholar
  44. 44.
    T.S. Zhang, J. Ma, Y.J. Leng, S.H. Chan, P. Hing, J.A. Kilner, Effect of transition metal oxides on densification and electrical properties of Si-containing Ce0.8Gd0.2O2 − δ ceramics. Solid State Ion. 168, 187–195 (2004)CrossRefGoogle Scholar
  45. 45.
    W. Sun, Z. Shi, J. Qian, Z. Wang, W. Liu, In-situ formed Ce0.8Sm0.2O2 − δ@Ba(Ce, Zr)1 − x(Sm, Y)xO3 − δ core/shell electron-blocking layer towards Ce0.8Sm0.2O2 − δ-based solid oxide fuel cells with high open circuit voltages. Nano Energy 8, 305–311 (2014)CrossRefGoogle Scholar
  46. 46.
    M. Yashima, Invited review: some recent developments in the atomic-scale characterization of structural and transport properties of ceria-based catalysts and ionic conductors. Catal. Today 253, 3–19 (2015)CrossRefGoogle Scholar
  47. 47.
    L. Zhang, F. Liu, K. Brinkman, K.L. Reifsnider, A.V. Virkar, A study of gadolinia-doped ceria electrolyte by electrochemical impedance spectroscopy. J. Power Sources 247, 947–960 (2014)CrossRefGoogle Scholar
  48. 48.
    A. Sawka, A. Kwatera, Deposition of Sm2O3-doped CeO2 layers using the MOCVD method. Ceram. Int. 42, 1446–1452 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and Materials EngineeringHefei UniversityHefeiChina

Personalised recommendations