Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16606–16612 | Cite as

Surface morphology, microstructure and electrical properties of Ca-doped ZnO thin films

  • K. OmriEmail author
  • A. Alyamani
  • L. El Mir


In the present work, a Ca-doped zinc oxide nanoparticle (ZOCa NPs) were synthesized using modified sol–gel process. X-ray diffraction study exhibited a highly crystalline ZOCa NPs with hexagonal Wurtzite structure. ZOCa samples were deposited by pulsed laser deposition (PLD) process to obtain ZOCa/p-Si heterojunction. The structural properties of this heterojunction were analyzed using X-ray diffraction. Electric and dielectric parameters of the heterostructure were studied after the deposition of gold contacts on the two parallel faces. The obtained Au/ZOCa/p-Si/Au heterojunction was studied by impedance spectroscopy system. The measured capacitance and conductance have a strong dependence on frequency (f) and voltage in the depletion and accumulation regions because of the presence of interface states (IS) and polarization processes predominantly at low f. The dielectric constant (ε′) values increase with decreasing f. We found that Ca doping had a strong effect on the performance of the device, and the ZOCa/p-Si heterojunction formed by ZOCa NPs is promising for rectifying electronic properties.



  1. 1.
    Z.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2, 821–826 (2003)CrossRefGoogle Scholar
  2. 2.
    P.K. Samanta, A. Saha, Optik 126, 3786–3788 (2015)CrossRefGoogle Scholar
  3. 3.
    Mao-Sheng Cao, Xi-Xi Wang, Min Zhang, Jin-Cheng Shu, Wen-Qiang Cao, Hui-Jing Yang, Xiao-Yong Fang, Jie Yuan, Adv. Funct. Mater. 29, 1807398 (2019)CrossRefGoogle Scholar
  4. 4.
    Mao-Sheng Cao, Jin-Cheng Shu, Xi-Xi Wang, Xin Wang, Min Zhang, Hui-Jing Yang, Xiao-Yong Fang, Jie Yuan, Ann. Phys. 531, 1800390 (2019)CrossRefGoogle Scholar
  5. 5.
    A. Das, M. Palit, S. Paul, B.N. Chowdhury, H.S. Dutta, A. Karmakar, S. Chattopadhyay, Appl. Phys. Lett. 105(1–4), 083106 (2014)CrossRefGoogle Scholar
  6. 6.
    Q.X. Zhao, P. Klason, M. Willander, Appl. Phys. A 88, 27–30 (2007)CrossRefGoogle Scholar
  7. 7.
    S. Paul, A. Das, M. Palit, S. Bhunia, A. Karmakar, S. Chattopadhyay, Adv. Mat. Lett. 7, 610–615 (2016)CrossRefGoogle Scholar
  8. 8.
    J.-P. Kim, J.-S. Bae, J.-K. Bang, J.-H. Yoon, M.-S. Won, B.S. Lee, S.-Y. Lee, O.-S. Jung, E. Kim, J. Korean Phys. Soc. 56, 378–382 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Dosmailov, L.N. Leonat, J. Patek, D. Roth, P. Bauer, M.C. Scharber, N.S. Sariciftci, J.D. Pedarnig, Thin Solid Films 591, 97–104 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Alauddin, J.K. Song, S.M. Park, Appl. Phys. A 101, 707–711 (2010)CrossRefGoogle Scholar
  11. 11.
    Maosheng Cao, Xixi Wang, Wenqiang Cao, Xiaoyong Fang, Bo Wen, Jie Yuan, Small 14, 1800987 (2018)CrossRefGoogle Scholar
  12. 12.
    J.H. Lee, T. Lu, S. Cho, F. Khatkhatay, L. Chen, H. Wang, Thin Solid Films 524, 320–327 (2012)CrossRefGoogle Scholar
  13. 13.
    X.D. Li, T.P. Chen, Y. Liu, K.C. Leong, Opt. Express 22, 23086–23093 (2014)CrossRefGoogle Scholar
  14. 14.
    Fenglin Xian, Xiaoxiong Wang, Xu Linhua, Xiangyin Li, Wangfeng Bai, J. Lumin. 144, 154–157 (2013)CrossRefGoogle Scholar
  15. 15.
    Lu Yuanxi, Jian Huang, Bing Li, Ke Tang, Yuncheng Ma, Meng Cao, Lin Wang, Linjun Wang, Appl. Surf. Sci. 428, 61–65 (2018)CrossRefGoogle Scholar
  16. 16.
    R. Pietruszka, B.S. Witkowski, E. Zielony, K. Gwozdz, E. Placzek-Popko, M. Godlewski, Sol. Energy 155, 1282–1288 (2017)CrossRefGoogle Scholar
  17. 17.
    A.A.M. Farag, M. Cavas, F. Yakuphanoglu, F.M. Amanullahd, J. Alloys Compd. 509, 7900–7908 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Nezhadesm-Kohardafchahi, S. Farjami-Shayesteh, Y. Badali, Ş. Altındal, M.A. Jamshidi-Ghozlu, Y. Azizian-Kalandaragh, Mater. Sci. Semicond. Process. 86, 173–180 (2018)CrossRefGoogle Scholar
  19. 19.
    Ji Hoon Kang, Kyoung Su Lee, Eun Kyu Kim, Thin Solid Films 658, 22–26 (2018)CrossRefGoogle Scholar
  20. 20.
    Somdatta Paul, Jenifar Sultana, Anirban Bhattacharyya, Anupam Karmakar, Sanatan Chattopadhyay, Optik 164, 745–752 (2018)CrossRefGoogle Scholar
  21. 21.
    K. Omri, A. Bettaibi, K. Khirouni, L. El Mir, Phys. B 537, 167–175 (2018)CrossRefGoogle Scholar
  22. 22.
    K. Omri, I. Najeh, L. El Mir, Ceram. Int. 42, 8940–8948 (2016)CrossRefGoogle Scholar
  23. 23.
    A. Sayari, L. El Mir, S. Al-Heniti, T. Al-Harbi, S.J. Yaghmour, A.A. Al-Ghamdi, Mater. Sci. Pol. 33, 198 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Sayari, L. El Mir, S. Al-Heniti, E. Shalaan, S.J. Yaghmour, S.A. Al-Thabaiti, A.A. Al-Ghamdi, F. Yakuphanoglu, J. Electroceram. 30, 221 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Alyamani, A. Sayari, A. Albadri, H. Albrithen, L. El Mir, Eur. Phys. J. Plus 131, 328 (2016)CrossRefGoogle Scholar
  26. 26.
    Ç. Bilkan, Ş. Altındal, Y. Azizian-Kalandaragh, Phys. B 515, 28–33 (2017)CrossRefGoogle Scholar
  27. 27.
    A. Nikravan, Y. Badali, Ş. Altındal, I. Uslu, I. Orak, J. Electron. Mater. 46, 5728–5736 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Demirezen, A. Kaya, O¨. Vural, S. Altındal, Mater. Sci. Semicond. Process. 33, 140–148 (2015)CrossRefGoogle Scholar
  29. 29.
    S. Karatas, F. Yakuphanoglu, F.M. Amanullah, J. Phys. Chem. Solids 73, 46–51 (2012)CrossRefGoogle Scholar
  30. 30.
    A. Tataroglu, H. Aydın, A.A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, F. Yakuphanoglu, J. Electroceram. 32, 369–375 (2014)CrossRefGoogle Scholar
  31. 31.
    A. Kumar, S. Mondal, S.G. Kumar, K.S.R. Koteswara Rao, Mater. Sci. Semicond. Process 40, 77–83 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Ataseven, A. Tataroglu, T. Memmedli, S. Ozçelik, J. Optoelectron. Adv. Mater. 14, 640–645 (2012)Google Scholar
  33. 33.
    M. Cavas, A.A.M. Farag, Z.A. Alahmed, F. Yakuphanoglu, J. Electroceram. 31, 298–308 (2013)CrossRefGoogle Scholar
  34. 34.
    M.S.P. Reddy, J.-H. Lee, J.-S. Jang, Synth. Metal 185–186, 167–171 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Tataroglu, A.A. Al-Ghamdi, F. El-Tantawy, W.A. Farooq, F. Yakuphanoglu, Appl. Phys. A 122, 220–226 (2016)CrossRefGoogle Scholar
  36. 36.
    M. Sharma, S.K. Tripathi, Mater. Sci. Sem. Process. 41, 155–161 (2016)CrossRefGoogle Scholar
  37. 37.
    M. Soylu, M. Cavas, A.A. Al-Ghamdi, Z.H. Gafer, F. El-Tantawy, F. Yakuphanoglu, Solar Energy Mater. Solar Cells 124, 180–185 (2014)CrossRefGoogle Scholar
  38. 38.
    R. Padma, K. Sreenu, V.R. Reddy, J. Alloys Compd. 695, 2587–2596 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Altındal, H. Uslu, J. Appl. Phys. 109, 074503 (2011)CrossRefGoogle Scholar
  40. 40.
    Y.S. Asar, T. Asar, Ş. Altındal, S. Özçelik, Philos. Mag. 95, 2885–2898 (2015)CrossRefGoogle Scholar
  41. 41.
    B.C. Sutar, B. Pati, B.N. Parida, P.R. Das, R.N.P. Choudhary, J. Mater. Sci. 24, 2043–2051 (2013)Google Scholar
  42. 42.
    O.G. Abdullah, S.A. Hussen, A. Alani, Asian Trans. Sci. Technol. 1, 01–04 (2011)Google Scholar
  43. 43.
    H.G. Çetinkaya, M. Yıldırım, P. Durmus, S. Altındal, J. Alloy Compd. 728, 896–901 (2017)CrossRefGoogle Scholar
  44. 44.
    R.J. Sengwa, P. Dhatarwal, S. Choudhary, Curr. Appl. Phys. 15, 135–143 (2015)CrossRefGoogle Scholar
  45. 45.
    N. Shiwakoti, A. Bobby, K. Asokan, B. Antony, Mater. Sci. Semicond. Proc. 42, 378–382 (2016)CrossRefGoogle Scholar
  46. 46.
    Veeresh Kumar, Shushant Kumar Singh, Himanshu Sharma, Shalendra Kumar, Ankush Vij, Physica B 552, 221–226 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE), Faculty of Sciences in GabesGabes UniversityGabesTunisia
  2. 2.National Nanotechnology Research Centre, KACSTRiyadhSaudi Arabia

Personalised recommendations