Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16596–16605 | Cite as

Enhancement in the thermoelectric properties of Cu3SbSe4 by Sn doping

  • K. Shyam Prasad
  • Ashok RaoEmail author


The solid-state reaction technique was employed to fabricate Sn doped Cu3SbSe4 samples. The effect of doping on structural and thermoelectric properties of Cu3SbSe4 samples is represented in the present communication. The powder X-ray diffraction pattern of all the samples show that they have tetragonal structure (space group \(I\bar{4}2m\)). It is observed that doping Sn at Sb site acts as acceptor dopant which enhances hole concentration. The temperature dependent electrical resistivity (ρ(T)) is observed to decrease with increase in Sn concentration up to x = 0.03, thereafter ρ(T) increases with the increase in x concentration. To explore the conduction mechanism, we have employed small poloron hopping (SPH) model to the ρ(T) data and the results indicate that SPH is operative in the high temperature regime for all samples. The data of Seebeck coefficient (S(T)) confirms that holes are the majority charge carriers for pristine as well as doped samples. The analysis of S(T) data reveals that all the samples have a narrow band gap. The contribution from electron thermal conductivity is found to be less than 1%, thus the total conductivity is mainly because of phonon thermal conductivity. The highest value of dimensionless figure of merit (ZT = 0.127) was achieved at 374 K for the sample Cu3Sb0.99Sn0.01Se3 which is slightly higher than that of the pristine sample (ZT = 0.115). The highest value of compatibility factor (0.98 V−1) was observed for the sample Cu3Sb0.98Sn0.02Se3 at 374 K.



The two authors (AR and SPK) acknowledge Council of Scientific and Industrial Research Grant (Sanction No.: 03(1409)/17/E MR-II) for the financial support required for this work. Authors are also thankful to Dr. P. D. Babu, UGC-DAE-CSR, Mumbai Centre for providing the necessary help in ρ(T), S(T) and κ(T) measurements.


  1. 1.
    M. Bachmann, M. Czerner, C. Heiliger, Ineffectiveness of energy filtering at grain boundaries for thermoelectric materials. Phys. Rev. B 86, 11 (2012)Google Scholar
  2. 2.
    K. Biswas, J. He, I.D. Blum, C.-I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489, 414 (2012)CrossRefGoogle Scholar
  3. 3.
    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008)CrossRefGoogle Scholar
  4. 4.
    G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105 (2008)CrossRefGoogle Scholar
  5. 5.
    X. Zheng, C. Liu, Y. Yan, Q. Wang, A review of thermoelectrics research: recent developments and potentials for sustainable and renewable energy applications. Renev. Sust. Energy. Rev. 32, 486 (2014)CrossRefGoogle Scholar
  6. 6.
    C. Vineis, A. Shakouri, A. Majumdar, M. Kanatzidis, Nanostructured Thermoelectrics: big efficiency gains from small features. Adv. Mater. 22, 3970 (2010)CrossRefGoogle Scholar
  7. 7.
    A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials. Ann. Rev. Mater. Res. 41, 399 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Minnich, M. Dresselhaus, Z. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ. Sci. 2, 466 (2009)CrossRefGoogle Scholar
  9. 9.
    R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, L. Chen, Ternary compound CuInTe2: energy & environmental science a promising thermoelectric material with diamond-like structure. Chem. Commun. 48, 3818 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Cui, Y. Li, Z. Du, Q. Meng, H. Zhou, Promising defect thermoelectric semiconductors Cu1−xGaSbxTe2(x = 0–0.1) with the chalcopyrite structure. J. Mater. Chem. A 1, 677 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Zhang, X. Qin, D. Li, H. Xin, C. Song, L. Li, X. Zhu, Z. Wang, G. Guo, L. Wang, Enhanced thermoelectric performance of CuGaTe2 based composites incorporated with nanophase Cu2Se. J. Mater. Chem. A 2, 2891 (2014)CrossRefGoogle Scholar
  12. 12.
    E.J. Skoug, J.D. Cain, P. Majsztrik, M. Kirkham, E. Lara-Curzio, D.T. Morelli, Doping effects on the thermoelectric properties of Cu3SbSe4. Sci. Adv. Mater. 3, 602 (2011)CrossRefGoogle Scholar
  13. 13.
    C. Yang, F. Huang, L. Wu, K. Xu, New stannite-like p-type thermoelectric material Cu3SbSe4. J. Phys. D Appl. Phys. 44, 295404 (2011)CrossRefGoogle Scholar
  14. 14.
    C. Goodman, The prediction of semiconducting properties in inorganic compounds. J. Phys. Chem. Solids 6, 305 (1958)CrossRefGoogle Scholar
  15. 15.
    T.-R. Wei, H. Wang, Z.M. Gibbs, C.-F. Wu, G.J. Snyder, J.-F. Li, Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap. J. Mater. Chem. A 2, 13527 (2014)CrossRefGoogle Scholar
  16. 16.
    L.-P. Hu, T.-J. Zhu, Y.-G. Wang, H.-H. Xie, Z.-J. Xu, X.-B. Zhao, Shifting up the optimum figure of merit of p-type bismuth telluride-based thermoelectric materials for power generation by suppressing intrinsic conduction. NPG Asia Mater. 6, 88 (2014)CrossRefGoogle Scholar
  17. 17.
    Q. Jiang, H. Yan, J. Khaliq, H. Ning, S. Grasso, K. Simpson, M.J. Reece, Q. Jiang, Large ZT enhancement in hot forged nanostructured p-type Bi0.5Sb1.5Te3 bulk alloys. J. Mater. Chem. A 2, 5785 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, S. Mildred Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008)CrossRefGoogle Scholar
  19. 19.
    L. Zhao, J. He, S. Hao, C. Wu, T. Hogan, C. Wolverton, V. Dravid, M. Kanatzidis, Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. J. Am. Chem. Soc. 134, 16327 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Suzumura, M. Watanabe, N. Nagasako, R. Asahi, Improvement in thermoelectric properties of Se-free Cu3SbSe4 compound. J. Electron. Mater. 43, 2356 (2014)CrossRefGoogle Scholar
  21. 21.
    C.-H. Chang, C.-L. Chen, W.-T. Chiu, Y.-Y. Chen, Enhanced thermoelectric properties of Cu3SbSe4 by germanium doping. Mater. Lett. 186, 227–230 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Zhang, J. Yang, Q. Jiang, L. Fu, Y. Xiao, Y. Luo, Z. Zhou, Improvement of thermoelectric properties of Cu3SbSe4 compound by In doping. Mater. Des. 98, 150 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Li, D. Li, H. Xin, J. Zhang, C. Song, X. Qin, Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures. J. Alloys Compd. 561, 105 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Li, X. Qin, D. Li, Y. Liu, J. Zhang, C. Song, H. Xin, Transport properties and enhanced thermoelectric performance of aluminum doped Cu3SbSe4. RSC Adv. 5, 31399 (2015)CrossRefGoogle Scholar
  25. 25.
    K.S. Prasad, A. Rao, K. Tyagi, N. Singh Chauhan, B. Gahtori, S. Bathula, A. Dhar, Enhanced thermoelectric performance of Pb doped Cu2SnSe3 synthesized employing spark plasma sintering. Physica B 512, 39 (2017)CrossRefGoogle Scholar
  26. 26.
    K.S. Prasad, B. Ashok Rao, S. Gahtori, A. Bathula, A. Dhar, The low and high temperature thermoelectric properties of Sb doped Cu2SnSe3. Mater. Res. Bull. 83, 160 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Goldsmid, J. Sharp, Estimation of the thermal band gap of a semiconductor from seebeck measurements. J. Electron. Mater. 28, 869 (1999)CrossRefGoogle Scholar
  28. 28.
    H. Goldsmid, Introduction to Thermoelectricity (Springer, Berlin, 2016)CrossRefGoogle Scholar
  29. 29.
    I. Ravich, B. Smirnov, Efimova, Semiconducting Lead Chalcogenides (Plenum Publishing Corporation, New York, 1970)CrossRefGoogle Scholar
  30. 30.
    H. Wang, Y. Pei, A. LaLonde, G. Snyder, Heavily doped p-Type PbSe with high thermoelectric performance: an alternative for PbTe. Adv. Mater. 23, 1366 (2011)CrossRefGoogle Scholar
  31. 31.
    R. Barnard, Thermoelectricity in Metals and Alloys (Taylor & Francis, London, 1972)Google Scholar
  32. 32.
    S. Cho, A. DiVenere, G. Wong, J. Ketterson, J. Meyer, Transport properties of Bi1−xSbx alloy thin films grown on CdTe (111)B. J. Appl. Phys. 85, 3655 (1999)CrossRefGoogle Scholar
  33. 33.
    S. Dutta, V. Shubha, T. Ramesh, F. D’Sa, Thermal and electronic properties of Bi1−xSbx alloys. J. Alloys Compd. 467, 305 (2009)CrossRefGoogle Scholar
  34. 34.
    Y.H. Bhaskar, W.M. Pai, C.L. Wu, C.J. Chang, Liu, Low thermal conductivity and enhanced thermoelectric performance of nanostructured Al-doped ZnTe. Ceram. Int. 42, 1070 (2016)CrossRefGoogle Scholar
  35. 35.
    M.H. Elsheikh, D.A. Shnawah, M.F.M. Sabri, S.B.M. Said, M.H. Hassan, M.B.A. Bashir, M. Mohamad, A review on thermoelectric renewable energy: principle parameters that affect their performance. Renew. Sustain. Energy. Rev. 30, 337 (2014)CrossRefGoogle Scholar
  36. 36.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 3, 041506 (2015)CrossRefGoogle Scholar
  37. 37.
    P.H. Ngan, D.V. Christensen, G.J. Snyder, L.T. Hung, S. Linderoth, N. Van Nong, N. Pryds, Towards high efficiency segmented thermoelectric unicouples. Phys. Status Solidi A 211, 9 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Manipal Institute of TechnologyManipal Academy of Higher EducationManipalIndia
  2. 2.Department of PhysicsNMAM Institute of TechnologyNitteIndia

Personalised recommendations