Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16579–16595 | Cite as

Influence of surface oxygen vacancies on the LPG sensing response and the gas selectivity of Nd-doped SnO2 nanoparticulate thin films

  • S. Deepa
  • Boben ThomasEmail author
  • K. PrasannaKumari
Article
  • 31 Downloads

Abstract

Nanostructured 0.1 to 6 wt% of Neodymium (Nd) doped SnO2 thin films are deposited by nebulizer assisted spray pyrolysis process to investigate the gas sensing ability. X-ray diffraction analyses suggest that moderate addition of Nd facilitates the crystalline growth of films leading to lattice strain and substantial increase of the oxygen vacancies, to get modified the charge transport through the grains. The 3 wt% Nd doped films grow in (301), (200) and (110) preferred orientation, which is supported by Transmission Electron Micrograph. The Field Emission Scanning Micrographs reveal changes in film morphology comprising of differently sized agglomerated particles. The AFM images present the possibility of regulation of surface roughness via Nd doping. The 3 wt% Nd doped film shows maximum response of 99.8% in 500 ppm of LPG with remarkable response and recovery times of 5 s and 10 s respectively, at an operating temperature of 350 °C. The LPG response persists with a value of 63%, even at a reduced operating temperature of 250 °C. The Nd doped films also show acceptable selectivity in presence of Methane, CO2, NO2 and Ammonia, in the studied concentration. The Raman and Photoluminescence spectra show that the ratio of in-plane to bridging oxygen vacancies is highest for 3 wt% Nd doped sample, influencing the gas sensing action.

Notes

Acknowledgements

The author SD is thankful to UGC for the Teacher Fellowship (UGC TF CODE: KLMG038 TF 06 dated 04/09/2013) and KP is grateful to KCSTE (822/DIR/2014-15/KSCSTE dated 09.02.2015) for the financial assistance.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no commercial or associative interest that represents a conflict of interest in connection with the work submitted.

References

  1. 1.
    T. Shigemori, Gas Sensors Status and Future Trends for Safety Applications, in The 14th International Meeting on Chemical Sensors (IMCS) Proceedings (Nuremberg, Germany, 2012), pp. 49–51.  https://doi.org/10.5162/imcs2012/pt1
  2. 2.
    B. Thomas, B. Skariah, Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J. Alloys Compd. 625, 231–240 (2015)CrossRefGoogle Scholar
  3. 3.
    E.A. Morais, L.V.A. Scalvi, V. Geraldo, R.M.F. Scalvi, S.J.L. Ribeiro, C.V. Santilli, S.H. Pulcinelli, Electro-optical properties of Er-doped SnO2 thin films. J. Eur. Ceram. Soc. 24, 1857–1860 (2004)CrossRefGoogle Scholar
  4. 4.
    S. Chen, X. Zhao, H. Xie, J. Liu, L. Duan, X. Ba, J. Zhao, Photoluminescence of undoped and Ce-doped SnO2 thin films deposited by sol–gel-dip-coating method. Appl. Surf. Sci. 258, 3255–3259 (2012)CrossRefGoogle Scholar
  5. 5.
    E.A. Morais, L.V.A. Scalvi, A. Tabata, J.B.B. De Oliveira, S.J.L. Ribeiro, Photoluminescence of Eu3+ ion in SnO2 obtained by sol–gel. J. Mater. Sci. 43, 345–349 (2008)CrossRefGoogle Scholar
  6. 6.
    C. Bouzidi, H. Elhouichet, A. Moadhen, Yb3+ effect on the spectroscopic properties of Er–Yb codoped SnO2 thin films. J. Lumin. 131, 2630–2635 (2011)CrossRefGoogle Scholar
  7. 7.
    F. Hild, L. Eichenberger, A. Bouché, X. Devaux, M. Stoffel, H. Rinnert, M. Vergnat, Structural and photoluminescence properties of evaporated SnO2 thin films doped with rare earths. Energy Procedia 84, 141–148 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Rinnert, P. Miska, M. Vergnat, G. Schmerber, S. Colis, A. Dinia, D. Muller, G. Ferblantier, A. Slaoui, Photoluminescence of Nd-doped SnO2 thin films. Appl. Phys. Lett. 100, 101908 (2012)CrossRefGoogle Scholar
  9. 9.
    K. Bouras, J.-L. Rehspringer, G. Schmerber, H. Rinnert, S. Colis, G. Ferblantier, M. Balestrieri, D. Ihiawakrim, A. Dinia, A. Slaoui, Optical and structural properties of Nd doped SnO2 powder fabricated by the sol–gel method. J. Mater. Chem. C 2, 8235–8243 (2014)CrossRefGoogle Scholar
  10. 10.
    G. Turgut, E. Sonmez, S. Duman, Evaluation of an Nd doping effect on characteristic properties of tin oxide. Mater. Sci. Semicond. Process. 30, 233–241 (2015)CrossRefGoogle Scholar
  11. 11.
    K.D. Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Nd3+ doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater. Res. Bull. 101, 264–271 (2010)CrossRefGoogle Scholar
  12. 12.
    W. Shide, L. Chao, W. Wei, W. Huanxin, S. Yanliang, Z. Youqi, L. Lingzhen, Nd-doped SnO2: characterization and its gas sensing property. J. Rare Earths 28, 171–173 (2010)Google Scholar
  13. 13.
    G. Qin, F. Gao, Q. Jiang, Y. Li, Y. Liu, L. Luo, K. Zhao, H. Zhao, Well-aligned Nd-doped SnO2 nanorods layered array: preparation, characterization and enhanced alcohol-gas sensing performance. Phys. Chem. Chem. Phys. 18, 5537–5549 (2016)CrossRefGoogle Scholar
  14. 14.
    S. Deepa, K. PrasannaKumari, B. Thomas, Contribution of oxygen-vacancy defect-types in enhanced CO2 sensing of nanoparticulate Zn-doped SnO2 films. Ceram. Int. 43, 17128–17141 (2017)CrossRefGoogle Scholar
  15. 15.
    H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)Google Scholar
  16. 16.
    M. Govender, D.E. Motaung, B.W. Mwakikunga, S. Umapathy, S. Sil, A.K. Prasad, A.G.J. Machatine, H.W. Kunert, Operating temperature effect in WO3 films for gas sensing. Sensors IEEE 2013, 1–4 (2013).  https://doi.org/10.1109/icsens.2013.6688192 Google Scholar
  17. 17.
    D. Chandran, L.S. Nair, S. Balachandran, K.R. Babu, M. Deepa, Band gap narrowing and photocatalytic studies of Nd3+ ion-doped SnO2 nanoparticles using solar energy. Bull. Mater. Sci. 39, 27–33 (2016)CrossRefGoogle Scholar
  18. 18.
    Y.-C. Liang, C.-M. Lee, Y.-J. Lo, Reducing gas-sensing performance of Ce-doped SnO2 thin films through a cosputtering method. RSC Adv. 7, 4724–4734 (2017)CrossRefGoogle Scholar
  19. 19.
    N.V. Long, T. Teranishi, Y. Yang, C.M. Thi, Y. Cao, M. Nogami, Iron oxide nanoparticles for next generation gas sensors. Int J. Metall. Mater. Eng. 1, 119 (2015)CrossRefGoogle Scholar
  20. 20.
    J. Biener, A. Wittstock, T.F. Baumann, J. Weissmüller, M. Bäumer, A.V. Hamza, Surface chemistry in nanoscale materials (review). Materials 2, 2404–2428 (2009)CrossRefGoogle Scholar
  21. 21.
    U. Diebold, Structure and properties of TiO2 surfaces: a brief review. Appl. Phys. A 76, 681–687 (2003).  https://doi.org/10.1007/s00339-002-2004-5 CrossRefGoogle Scholar
  22. 22.
    Boben Thomas, S. Deepa, K. PrasannaKumari, Influence of surface defects and preferential orientation in nanostructured Ce-doped SnO2 thin films by nebulizer spray deposition for lowering the LPG sensing temperature to 150 °C. Ionics 25, 809–826 (2019)CrossRefGoogle Scholar
  23. 23.
    J. Kaur, S.C. Roy, M.C. Bhatnagar, Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature. Sens. Actuators, B 123, 1090–1095 (2007)CrossRefGoogle Scholar
  24. 24.
    L. Schmidt-Mende, J.L.M. Driscoll, ZnO – nanostructures, defects and devices. Mater. Today 10, 40–48 (2007)CrossRefGoogle Scholar
  25. 25.
    M. Chikamatsu, S. Nagamatsu, T. Taima, Y. Yoshida, N. Sakai, H. Yokokawa, K. Saito, K. Yase, C 60 thin-film transistors with low work-function metal electrodes. Appl. Phys. Lett. 85, 2396–2398 (2004)CrossRefGoogle Scholar
  26. 26.
    J.F. Geiger, K.D. Schierbaum, W. Göpel, Surface spectroscopic studies on Pd-doped SnO2. Vacuum 41, 1629–1632 (1990)CrossRefGoogle Scholar
  27. 27.
    R. Dhahri, M. Hjiri, L. El-Mir, H. Alamri, A. Bonavita, D. Iannazzo, S.G. Leonardi, G. Neri, CO sensing characteristics of In-doped ZnO semiconductor nanoparticles. J. Sci. 2, 34–40 (2017)CrossRefGoogle Scholar
  28. 28.
    K. Fukui, M. Nakane, CO gas sensor based on Au-La203 loaded SnO2 ceramic. Sens. Actuators, B 25, 486–490 (1995)CrossRefGoogle Scholar
  29. 29.
    J.K.G. Dhont, W.J. Briels, Single-particle thermal diffusion of charged colloids: double-layer theory in a temperature gradient. Eur. Phys. J. E 25, 61–76 (2008)CrossRefGoogle Scholar
  30. 30.
    J. Zhao, Q. Huang, C. de la Cruz, S. Li, J.W. Lynn, Y. Chen, M.A. Green, G.F. Chen, G. Li, Z. Li, J.L. Luo, N.L. Wang, P. Dai, Structural and magnetic phase diagram of CeFeAsO1-xFx and its relation to high-temperature superconductivity. Nat. Mater. 7, 953–959 (2008)CrossRefGoogle Scholar
  31. 31.
    M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuators, B 115, 128–133 (2006)CrossRefGoogle Scholar
  32. 32.
    C. Yu, L. Wang, B. Huang, In situ DRIFTS study of the low temperature selective catalytic reduction of NO with NH3 over MnOx supported on multi-walled carbon nanotubes catalysts. Aerosol Air Qual. Res. 15, 1017–1027 (2015)CrossRefGoogle Scholar
  33. 33.
    X. Guo, A. Hoffman, J.T. Yates, Adsorption kinetics and isotopic equilibration of oxygen adsorbed on the Pd(111) surface. J. Chem. Phys. 90, 5787–5793 (1989)CrossRefGoogle Scholar
  34. 34.
    Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, O2 and CO sensing of Ga2O3 multiple nanowire gas sensors. Sens. Actuators, B 129, 666–670 (2008)CrossRefGoogle Scholar
  35. 35.
    S. Ahlers, G. Mȕller, T. Doll, A rate equation approach to the gas sensitivity of thin film metal oxide materials. Sens. Actuators, B 107, 587–599 (2005)CrossRefGoogle Scholar
  36. 36.
    N. Khedmi, M.B. Rabeh, M. Kanzari, Thickness dependent structural and optical properties of vacuum evaporated CuIn5S8 thin films. Energy Procedia 44, 61–68 (2014)CrossRefGoogle Scholar
  37. 37.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London, 1974)CrossRefGoogle Scholar
  38. 38.
    C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through lanthanum doping. J. Alloys Compd. 666, 392–405 (2016)CrossRefGoogle Scholar
  39. 39.
    N. Serpone, Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287–24293 (2006)CrossRefGoogle Scholar
  40. 40.
    Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S.-H. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, e30–e36 (2012)CrossRefGoogle Scholar
  41. 41.
    C.H. Tan, S.T. Tan, H.B. Lee, C.C. Yap, M. Yahaya, Growth concentration effect on oxygen vacancy induced band gap narrowing and optical CO gas sensing properties of ZnO nanorods. AIP Conf. Proc. 1784, 040021–040025 (2016)CrossRefGoogle Scholar
  42. 42.
    L.Z. Liu, T.H. Li, X.L. Wu, J.C. Shen, P.K. Chu, Identification of oxygen vacancy types from Raman spectra of SnO2 nanocrystals. J. Raman Spectrosc. 43, 1423–1426 (2012)CrossRefGoogle Scholar
  43. 43.
    W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D 33, 912–916 (2000)CrossRefGoogle Scholar
  44. 44.
    A. Diéguez, A. Romano-Rodríguez, A. Vilà, J.R. Morante, The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 90, 1550–1557 (2001)CrossRefGoogle Scholar
  45. 45.
    J.L. Gole, A.V. Iretskii, M.G. White, A. Jacob, W.B. Carter, S.M. Prokes, A.S. Erickson, Suggested oxidation state dependence for the activity of submicron structures prepared from tin/tin oxide mixtures. Chem. Mater. 16, 5473–5481 (2004)CrossRefGoogle Scholar
  46. 46.
    W.Z. Wang, C.K. Xu, G.H. Wang, Y.K. Liu, C.L. Zheng, Preparation of smooth single-crystal Mn3O4 nanowires. Adv. Mater. 14, 837–840 (2002)CrossRefGoogle Scholar
  47. 47.
    S. Luo, P.K. Chu, W. Liu, M. Zhang, C. Lin, Origin of low-temperature photoluminescence from SnO2 nanowires fabricated by thermal evaporation and annealed in different ambient. Appl. Phys. Lett. 88, 183112–183113 (2006)CrossRefGoogle Scholar
  48. 48.
    K. Bouras, G. Schmerber, H. Rinnert, D. Aureau, H. Park, G. Ferblantier, S. Colis, T. Fix, C. Park, W.K. Kim, A. Dinia, A. Slaoui, Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices. Solar Energy Mater. Solar Cells 145, 134–141 (2016)CrossRefGoogle Scholar
  49. 49.
    J. Ni, X. Zhao, X. Zheng, J. Zhao, B. Liu, Electrical, structural, photoluminescence and optical properties of p-type conducting, antimony-doped SnO2 thin films. Acta Mater. 57, 278–285 (2009)CrossRefGoogle Scholar
  50. 50.
    O. Oprea, O.R. Vasile, G. Voicu, E. Andronescu, The influence of the thermal treatment on luminescence properties of ZnO. Digest J. Nanomater. Biostruct. 8, 747–756 (2013)Google Scholar
  51. 51.
    M. Epifani, J.D. Prades, E. Comini, E. Pellicer, M. Avella, P. Siciliano, G. Faglia, A. Cirera, R. Scotti, F. Morazzoni, J.R. Morante, The role of surface oxygen vacancies in the NO2 sensing properties of SnO2 nanocrystals. J. Phys. Chem. C 112, 19540–19546 (2008)CrossRefGoogle Scholar
  52. 52.
    X.D. Pu, W.Z. Shen, Z.Q. Zhang, H. Ogawa, Q.X. Guo, Growth and depth dependence of visible luminescence in wurtzite InN epilayers. Appl. Phys. Lett. 88, 151904 (2006)CrossRefGoogle Scholar
  53. 53.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7990 (1996)CrossRefGoogle Scholar
  54. 54.
    S. Rani, S.C. Roy, M.C. Bhatnagar, Effect of Fe doping on the gas sensing properties of nano-crystalline SnO2 thin films. Sens. Actuators, B 122, 204–210 (2007)CrossRefGoogle Scholar
  55. 55.
    D.H. Zhang, Q.P. Wang, Z.Y. Xue, Ultra violet photoluminescenc of ZnO films on different substrates. Acta Physica Sinica 52, 1484–1487 (2003)Google Scholar
  56. 56.
    S. Wang, Y. Li, J. Bai, Q. Yang, Y. Song, C. Zhang, Characterization and photoluminescence studies of CdTe nanoparticles before and after transfer from liquid phase to polystyrene. Bull. Mater. Sci. 32, 487–491 (2009)CrossRefGoogle Scholar
  57. 57.
    J. Hu, Y. Bando, Q. Liu, D. Golberg, Laser-ablation growth and optical properties of wide and long single-crystal SnO2 ribbons. Adv. Funct. Mater. 13, 493–496 (2003)CrossRefGoogle Scholar
  58. 58.
    C. Malagù, A. Giberti, S. Morandi, C.M. Aldao, Electrical and spectroscopic analysis in nanostructured SnO2: “Long-term” resistance drift is due to in-diffusion. J. Appl. Phys. 110, 093711–093715 (2011)CrossRefGoogle Scholar
  59. 59.
    S. Deepa, K. PrasannaKumari, B. Thomas, Influence of lattice strain and dislocations on the LPG sensing performance of praseodymium doped SnO2 nanostructured thin films. IJRASET 5, 1054–1059 (2017).  https://doi.org/10.22214/ijraset.2017.9152 Google Scholar
  60. 60.
    Z. Wang, T. Zhang, T. Han, T. Fei, S. Liu, G. Lu, Oxygen vacancy engineering for enhanced sensing performances: a case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens. Actuators, B 266, 812–822 (2018)CrossRefGoogle Scholar
  61. 61.
    D. Haridas, A. Chowdhuri, K. Sreenivas, V. Gupta, Enhanced room temperature response of SnO2 thin film sensor loaded with Pt catalyst clusters under UV radiation for LPG. Sens. Actuators, B 153, 152–157 (2011)CrossRefGoogle Scholar
  62. 62.
    B. Yuliarto, G. Gumilar, N.L.W. Septiani, SnO2 nanostructure as pollutant gas sensors: synthesis, sensing performances, and mechanism (review). Adv. Mater. Sci. Eng. 2015, 694823 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Centre in PhysicsMar Athanasius College (Autonomous)KothamangalamIndia

Personalised recommendations