Advertisement

Highly efficient TiO2/AgBr/PANI heterojunction with enhanced visible light photocatalytic activity towards degradation of organic dyes

  • Solmaz ZeynaliEmail author
  • Mohammad Taghi Taghizadeh
Article
  • 19 Downloads

Abstract

In this work, we reports preparation of novel TiO2/AgBr/PANI nanocomposite, as visible-light-driven photocatalyst via a convenient low-temperature method. The prepared sample was characterized by energy dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, Fourier transform infrared and UV–Vis diffuse reflectance spectroscopy techniques. The rhodamine B dye in aqueous solution was chosen as an environmental dye pollutant model. Photocatalytic activity for degradation of RhB increased from just 12.2% degradation with TiO2 to 43.6, 64.6 and 98.6% with TiO2/AgBr, TiO2/PANI and TiO2/AgBr/PANI after 140 min. The high activity of TiO2/AgBr/PANI nanocomposite could be attribute to more absorption in visible range, formation of heterojunction between counterparts and efficiently separation of the charge carriers, which was subsequently confirmed by photoluminescence spectroscopy and active spices trapping with different scavengers. Moreover, for the purpose of access the wide applications of the prepared samples, methylene blue and methyl orange were chosen as typical organic pollutants and degraded with prepared samples. The photostability and recyclability of TiO2/AgBr/PANI nanocomposite was investigated after five runs.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support of this work provided by University of Tabriz.

References

  1. 1.
    Q. Wang, S. Dong, D. Zhang, C. Yu, J. Lu, D. Wang, J. Sun, Magnetically recyclable visible-light-responsive MoS2@ Fe3O4 photocatalysts targeting efficient wastewater treatment. J. Mater. Sci. 53, 1135–1147 (2018)CrossRefGoogle Scholar
  2. 2.
    D. Masih, Y. Ma, S. Rohani, Graphitic C3N4 based noble-metal-free photocatalyst systems: a review. Appl. Catal. B 206, 556–588 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Kalam, A.G. Al-Sehemi, M. Assiri, G. Du, T. Ahmad, I. Ahmad, M. Pannipara, Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results Phys. 8, 1046–1053 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Zhao, X. Wu, Nanoparticles assembled SnO2 nanosheet photocatalysts for wastewater purification. Mater. Lett. 210, 354–357 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, A review on BiVO4 photocatalyst: activity enhancement methods for solar photocatalytic applications. Appl. Catal. A 555, 47–74 (2018)CrossRefGoogle Scholar
  6. 6.
    K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)CrossRefGoogle Scholar
  7. 7.
    M.M. Adnan, N.M. Julkapli, M. Amir, A. Maamor, Effect on different TiO2 photocatalyst supports on photodecolorization of synthetic dyes: a review. Int. J. Environ. Sci. Technol. 16, 547–566 (2018)CrossRefGoogle Scholar
  8. 8.
    R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B 187, 47–58 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Li, M. Zhang, Q. Li, J. Yang, Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst. Appl. Surf. Sci. 391, 184–193 (2017)CrossRefGoogle Scholar
  10. 10.
    M.M. Momeni, Y. Ghayeb, Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods. J. Mol. Catal. A 417, 107–115 (2016)CrossRefGoogle Scholar
  11. 11.
    V. Moradi, M.B.G. Jun, A. Blackburn, R.A. Herring, Significant improvement in visible light photocatalytic activity of Fe doped TiO2 using an acid treatment process. Appl. Surf. Sci. 427, 791–799 (2018)CrossRefGoogle Scholar
  12. 12.
    K.A. Rahman, T. Bak, A. Atanacio, M. Ionescu, J. Nowotny, Toward sustainable energy: photocatalysis of Cr-doped TiO2: 2. Effect of defect disorder. Ionics 24, 327–341 (2018)CrossRefGoogle Scholar
  13. 13.
    T. Jia, F. Fu, D. Yu, J. Cao, G. Sun, Facile synthesis and characterization of N-doped TiO2/C nanocomposites with enhanced visible-light photocatalytic performance. Appl. Surf. Sci. 430, 438–447 (2018)CrossRefGoogle Scholar
  14. 14.
    S.M. El-Sheikh, T.M. Khedr, A. Hakki, A.A. Ismail, W.A. Badawy, D.W. Bahnemann, Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Sep. Purif. Technol. 173, 258–268 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, H651–H656 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Hunge, M. Mahadik, A. Moholkar, C. Bhosale, Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrason. Sonochem. 35, 233–242 (2017)CrossRefGoogle Scholar
  17. 17.
    C. Lai, M.-M. Wang, G.-M. Zeng, Y.-G. Liu, D.-L. Huang, C. Zhang, R.-Z. Wang, P. Xu, M. Cheng, C. Huang, H.-P. Wu, L. Qin, Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl. Surf. Sci. 390, 368–376 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, W. Yang, X. Chen, J. Wang, Y. Zhu, Photocatalytic activity enhancement of core-shell structure g-C3N4@ TiO2 via controlled ultrathin g-C3N4 layer. Appl. Catal. B 220, 337–347 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, Photosensitization of Fe3O4/ZnO by AgBr and Ag3PO4 to fabricate novel magnetically recoverable nanocomposites with significantly enhanced photocatalytic activity under visible-light irradiation. Ceram. Int. 42, 15224–15234 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Lee, Y. Park, D. Pradhan, Y. Sohn, AgX (X = Cl, Br, I)/BiOX nanoplates and microspheres for pure and mixed (methyl orange, rhodamine B and methylene blue) dyes. J. Ind. Eng. Chem. 35, 231–252 (2016)CrossRefGoogle Scholar
  21. 21.
    M.A. Asi, C. He, M. Su, D. Xia, L. Lin, H. Deng, Y. Xiong, R. Qiu, X.-Z. Li, Photocatalytic reduction of CO2 to hydrocarbons using AgBr/TiO2 nanocomposites under visible light. Catal. Today 175, 256–263 (2011)CrossRefGoogle Scholar
  22. 22.
    Y. Deng, L. Tang, G. Zeng, H. Dong, M. Yan, J. Wang, W. Hu, J. Wang, Y. Zhou, J. Tang, Enhanced visible light photocatalytic performance of polyaniline modified mesoporous single crystal TiO2 microsphere. Appl. Surf. Sci. 387, 882–893 (2016)CrossRefGoogle Scholar
  23. 23.
    X. Li, J. Wang, Z. Hu, M. Li, K. Ogino, In situ polypyrrole polymerization enhances the photocatalytic activity of nanofibrous TiO2/SiO2 membranes. Chin. Chem. Lett. 29, 166–170 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Mahashabde, S. Patel, P. Baviskar, Physical properties of poly [(thiophene-2, 5-diyl)-co-para-chloro benzylidene] doped with cobalt sulphate: synthesis and characterization. Polym. Bull. 75, 255–265 (2018)CrossRefGoogle Scholar
  25. 25.
    Z. Zhu, X. Tang, C. Ma, M. Song, N. Gao, Y. Wang, P. Huo, Z. Lu, Y. Yan, Fabrication of conductive and high-dispersed Ppy@Ag/g-C3N4 composite photocatalysts for removing various pollutants in water. Appl. Surf. Sci. 387, 366–374 (2016)CrossRefGoogle Scholar
  26. 26.
    J. Park, Visible and near infrared light active photocatalysis based on conjugated polymers. J. Ind. Eng. Chem. 51, 27–43 (2017)CrossRefGoogle Scholar
  27. 27.
    L. Liu, L. Ding, Y. Liu, W. An, S. Lin, Y. Liang, W. Cui, A stable Ag3PO4@PANI core@shell hybrid: enrichment photocatalytic degradation with π-π conjugation. Appl. Catal. B 201, 92–104 (2017)CrossRefGoogle Scholar
  28. 28.
    W. Gao, X. Zhang, X. Su, F. Wang, Z. Liu, B. Liu, J. Zhan, H. Liu, Y. Sang, Construction of bimetallic Pd-Ag enhanced AgBr/TiO2 hierarchical nanostructured photocatalytic hybrid capillary tubes and devices for continuous photocatalytic degradation of VOCs. Chem. Eng. J. 346, 77–84 (2018)CrossRefGoogle Scholar
  29. 29.
    N. Bahrudin, M. Nawi, W. Nawawi, Photocatalytic enhancement of immobilized TiO2-polyaniline bilayer (TiO2-PBL) system for decolorization of methyl orange dye. Mater. Res. Bull. 106, 388–395 (2018)CrossRefGoogle Scholar
  30. 30.
    Y. Zhang, J. Zhou, W. Cai, J. Zhou, Z. Li, Enhanced photocatalytic performance and degradation pathway of Rhodamine B over hierarchical double-shelled zinc nickel oxide hollow sphere heterojunction. Appl. Surf. Sci. 430, 549–560 (2018)CrossRefGoogle Scholar
  31. 31.
    Z.H. Yamani, Comparative study on photocatalytic degradation of methylene blue by Degussa P25 titania: pulsed laser light versus continuous broad spectrum lamp irradiation. Arabian J. Sci. Eng. 43, 423–432 (2018)CrossRefGoogle Scholar
  32. 32.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, Ultrasonic-assisted preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites as magnetically separable visible-light-driven photocatalysts with excellent activity. J. Colloid Interface Sci. 461, 144–153 (2016)CrossRefGoogle Scholar
  33. 33.
    H. Li, T. Li, H. Liu, B. Huang, Q. Zhang, Hierarchical flower-like nanostructures of anatase TiO2 nanosheets dominated by {001}facets. J. Alloys Compd. 657, 1–7 (2016)CrossRefGoogle Scholar
  34. 34.
    M. Ge, W. Liu, X.-R. Hu, Z.-L. Li, Magnetically separable Ag/AgBr/NiFe2O4 composite as a highly efficient visible light plasmonic photocatalyst. J. Phys. Chem. Solids 109, 1–8 (2017)CrossRefGoogle Scholar
  35. 35.
    R. Sasikala, A. Gaikwad, O. Jayakumar, K. Girija, R. Rao, A. Tyagi, S. Bharadwaj, Nanohybrid MoS2-PANI-CdS photocatalyst for hydrogen evolution from water. Colloids Surf. A 481, 485–492 (2015)CrossRefGoogle Scholar
  36. 36.
    J. Yang, R. Hu, W. Meng, Y. Du, A novel p-LaFeO3/n-Ag3PO4 heterojunction photocatalyst for phenol degradation under visible light irradiation. Chem. Commun. 52, 2620–2623 (2016)CrossRefGoogle Scholar
  37. 37.
    Z. Lu, L. Zeng, W. Song, Z. Qin, D. Zeng, C. Xie, In situ synthesis of C-TiO2/g-C3N4 heterojunction nanocomposite as highly visible light active photocatalyst originated from effective interfacial charge transfer. Appl. Catal. B 202, 489–499 (2017)CrossRefGoogle Scholar
  38. 38.
    T. Sampreeth, M. Al-Maghrabi, B. Bahuleyan, M. Ramesan, Synthesis, characterization, thermal properties, conductivity and sensor application study of polyaniline/cerium-doped titanium dioxide nanocomposites. J. Mater. Sci. 53, 591–603 (2018)CrossRefGoogle Scholar
  39. 39.
    M. Sboui, M.F. Nsib, A. Rayes, M. Swaminathan, A. Houas, TiO2–PANI/Cork composite: a new floating photocatalyst for the treatment of organic pollutants under sunlight irradiation. J. Environ. Sci. 60, 3–13 (2017)CrossRefGoogle Scholar
  40. 40.
    A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater. Sci.: Mater. Electron. 27, 4800–4809 (2016)Google Scholar
  41. 41.
    L. Zhong, C. Hu, J. Zhuang, Y. Zhong, D. Wang, H. Zhou, AgBr/MgBi2O6 heterostructured composites with highly efficient visible-light-driven photocatalytic activity. J. Phys. Chem. Solids 117, 94–100 (2018)CrossRefGoogle Scholar
  42. 42.
    R. Tanwar, S. Kumar, U.K. Mandal, Photocatalytic activity of PANI/Fe0 doped BiOCl under visible light-degradation of Congo red dye. J. Photochem. Photobiol. A 333, 105–116 (2017)CrossRefGoogle Scholar
  43. 43.
    G. Gupta, A. Kaur, A. Sinha, S.K. Kansal, Photocatalytic degradation of levofloxacin in aqueous phase using Ag/AgBr/BiOBr microplates under visible light. Mater. Res. Bull. 88, 148–155 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Tasbihi, K. Kočí, M. Edelmannová, I. Troppová, M. Reli, R. Schomaecker, Pt/TiO2 photocatalysts deposited on commercial support for photocatalytic reduction of CO2. J. Photochem. Photobiol. A 366, 72–80 (2018)CrossRefGoogle Scholar
  45. 45.
    P. Amornpitoksuk, S. Suwanboon, Comparative study of the photocatalytic decolorization of rhodamine B dye by AgI-Ag3PO4 prepared from co-precipitation and ion-exchange methods. J. Alloys Compd. 720, 582–588 (2017)CrossRefGoogle Scholar
  46. 46.
    Y. Gu, Y. Jiao, X. Zhou, A. Wu, B. Buhe, H. Fu, Strongly coupled Ag/TiO2 heterojunctions for effective and stable photothermal catalytic reduction of 4-nitrophenol. Nano Res. 11, 126–141 (2018)CrossRefGoogle Scholar
  47. 47.
    H. Khan, I.K. Swati, Fe3+-doped anatase TiO2 with d–d transition, oxygen vacancies and Ti3+ centers: synthesis, characterization, UV–vis photocatalytic and mechanistic studies. Ind. Eng. Chem. Res. 55, 6619–6633 (2016)CrossRefGoogle Scholar
  48. 48.
    S. Feizpoor, A. Habibi-Yangjeh, Integration of Ag2WO4 and AgBr with TiO2 to fabricate ternary nanocomposites: novel plasmonic photocatalysts with remarkable activity under visible light. Mater. Res. Bull. 99, 93–102 (2018)CrossRefGoogle Scholar
  49. 49.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, Novel magnetically separable ZnO/AgBr/Fe3O4/Ag3VO4 nanocomposites with tandem n–n heterojunctions as highly efficient visible-light-driven photocatalysts. RSC Adv. 6, 2402–2413 (2016)CrossRefGoogle Scholar
  50. 50.
    I. Arshadnia, M. Movahedi, N. Rasouli, SnFe2O4/SnO2/PANI magnetically separable photocatalyst for decolorization of two dye mixture in aqueous solution. Surf. Interfaces 8, 91–96 (2017)CrossRefGoogle Scholar
  51. 51.
    M. Shekofteh-Gohari, A. Habibi-Yangjeh, Combination of CoWO4 and Ag3VO4 with Fe3O4/ZnO nanocomposites: magnetic photocatalysts with enhanced activity through pnn heterojunctions under visible light. Solid State Sci. 74, 24–36 (2017)CrossRefGoogle Scholar
  52. 52.
    X. Jia, M. Tahir, L. Pan, Z.-F. Huang, X. Zhang, L. Wang, J.-J. Zou, Direct Z-scheme composite of CdS and oxygen-defected CdWO4: an efficient visible-light-driven photocatalyst for hydrogen evolution. Appl. Catal. B 198, 154–161 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations