Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16562–16570 | Cite as

Synthesis and properties of multifunctional Si–LiNbO3 heterostructures for non-volatile memory units

  • M. SumetsEmail author
  • V. Ievlev
  • V. Dybov
  • A. Kostyuchenko
  • D. Serikov
  • S. Kannykin
  • E. Belonogov
Article
  • 19 Downloads

Abstract

Multifunctional Si–LiNbO3 heterostructures were synthesized by the radio-frequency magnetron sputtering (RFMS) method. The structural and electrical properties of fabricated heterostructures were investigated. The optimal RFMS regimes ensuring the formation of highly oriented 〈0001〉-LiNbO3 films are proposed. The synthesized heterostructures manifest all required parameters for their successful practical application for non-volatile memory units and optoelectronics.

Notes

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (Grant No. 18-29-11062 «Synthesis of lithium niobate films for an elemental basis of opto- acousto- and microelectronic devices»).

References

  1. 1.
    B. Sun, P. Han, W. Zhao, Y. Liu, P. Chen, J. Phys. Chem. C 118, 18814 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Noguchi, O. Mitomi, H. Miyazawa, in Opt. Fiber Commun. OFC. (Opt. Soc. America, n.d.), pp. 205–206Google Scholar
  3. 3.
    S.T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, B. Sahoo, J. Magn. Magn. Mater. 418, 122 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Matteppanavar, S. Rayaprol, A.V. Anupama, B. Sahoo, B. Angadi, J. Supercond. Nov. Magn. 28, 2465 (2015)CrossRefGoogle Scholar
  5. 5.
    Y.S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, W.-G. Lee, W.H. Steier, Opt. Lett. 36, 1119 (2011)CrossRefGoogle Scholar
  6. 6.
    A.J. Mercante, P. Yao, S. Shi, G. Schneider, J. Murakowski, D.W. Prather, Opt. Express 24, 15590 (2016)CrossRefGoogle Scholar
  7. 7.
    H. Akazawa, M. Shimada, J. Cryst. Growth 270, 560 (2004)CrossRefGoogle Scholar
  8. 8.
    C.H.-J. Huang, Integr. Ferroelectr. 6, 355 (1995)CrossRefGoogle Scholar
  9. 9.
    B.W. Wessels, Annu. Rev. Mater. Res. 37, 659 (2007)CrossRefGoogle Scholar
  10. 10.
    M. Coll, J. Fontcuberta, M. Althammer, M. Bibes, H. Boschker, A. Calleja, G. Cheng, M. Cuoco, R. Dittmann, B. Dkhil, I. El Baggari, M. Fanciulli, I. Fina, E. Fortunato, C. Frontera, S. Fujita, V. Garcia, S.T.B. Goennenwein, C.-G. Granqvist, J. Grollier, R. Gross, A. Hagfeldt, G. Herranz, K. Hono, E. Houwman, M. Huijben, A. Kalaboukhov, D.J. Keeble, G. Koster, L.F. Kourkoutis, J. Levy, M. Lira-Cantu, J.L. MacManus-Driscoll, J. Mannhart, R. Martins, S. Menzel, T. Mikolajick, M. Napari, M.D. Nguyen, G. Niklasson, C. Paillard, S. Panigrahi, G. Rijnders, F. Sánchez, P. Sanchis, S. Sanna, D.G. Schlom, U. Schroeder, K.M. Shen, A. Siemon, M. Spreitzer, H. Sukegawa, R. Tamayo, J. van den Brink, N. Pryds, F.M. Granozio, Appl. Surf. Sci. 482, 1 (2019)CrossRefGoogle Scholar
  11. 11.
    A. Bartasyte, S. Margueron, T. Baron, S. Oliveri, P. Boulet, Adv. Mater. Interfaces 4, 1600998 (2017)CrossRefGoogle Scholar
  12. 12.
    C. S. Hwang and T. Mikolajick, Adv. Non-Volatile Mem. Storage Technol. 393 (2019)Google Scholar
  13. 13.
    T.A. Rost, H. Lin, T.A. Rabson, Appl. Phys. Lett. 59, 3654 (1991)CrossRefGoogle Scholar
  14. 14.
    J.J. Kingston, D.K. Fork, F. Leplingard, F.A. Ponce, MRS Proc. 341, 289 (1994)CrossRefGoogle Scholar
  15. 15.
    R.S. Feigelson, J. Cryst. Growth 166, 1 (1996)CrossRefGoogle Scholar
  16. 16.
    M. Kadota, T. Ogami, K. Yamamoto, H. Tochishita, Y. Negoro, IEEE Trans Ultrason. Ferroelectr. Freq. Control 57, 2564 (2010)Google Scholar
  17. 17.
    G.H. Haertling, J. Vac. Sci. Technol., A 9, 414 (1991)CrossRefGoogle Scholar
  18. 18.
    S. Bredikhin, S. Scharner, M. Klingler, V. Kveder, B. Red’kin, W. Weppner, J. Appl. Phys. 88, 5687 (2000)CrossRefGoogle Scholar
  19. 19.
    S. Sanna, R. Hölscher, W.G. Schmidt, Appl. Surf. Sci. 301, 70 (2014)CrossRefGoogle Scholar
  20. 20.
    T. Volk, M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Springer, Berlin, 2008)CrossRefGoogle Scholar
  21. 21.
    Z. Pei, Q. Hu, Y. Kong, S. Liu, S. Chen, J. Xu, AIP Adv. 1, 032171 (2011)CrossRefGoogle Scholar
  22. 22.
    W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, J. Xu, W. Li, J. Cui, W. Wang, D. Zheng, L. Jia, S. Saeed, H. Liu, R. Rupp, Y. Kong, J. Xu, Materials (Basel). 12, 819 (2019)CrossRefGoogle Scholar
  23. 23.
    L. Hao, J. Zhu, Y.Y. Liu, S. Wang, H. Zeng, X. Liao, Y.Y. Liu, H. Lei, Y. Zhang, W. Zhang, Y. Li, Thin Solid Films 520, 3035 (2012)CrossRefGoogle Scholar
  24. 24.
    M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, A. Morbiato, Opt. Express 13, 5416 (2005)CrossRefGoogle Scholar
  25. 25.
    P. Chandra, M. Dawber, P.B. Littlewood, J.F. Scott, Ferroelectrics 313, 7 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Sumets, A. Kostyuchenko, V. Ievlev, S. Kannykin, V. Dybov, J. Mater. Sci.: Mater. Electron. 26, 4250 (2015)Google Scholar
  27. 27.
    M. Sumets, V. Ievlev, A. Kostyuchenko, V. Kuz’mina, V. Kuzmina, Mol. Cryst. Liq. Cryst. 603, 202 (2014)CrossRefGoogle Scholar
  28. 28.
    D.K. Fork, F. Armani-leplingard, J.J. Kingston, MRS Bull. 21, 53 (1996)CrossRefGoogle Scholar
  29. 29.
    Y. Sakashita, H. Segawa, J. Appl. Phys. 77, 5995 (1995)CrossRefGoogle Scholar
  30. 30.
    B.J. Curtis, H.R. Brunner, Mater. Res. Bull. 10, 515 (1975)CrossRefGoogle Scholar
  31. 31.
    S. Kondo, S. Miyazawa, S. Fushimi, K. Sugii, Appl. Phys. Lett. 26, 489 (1975)CrossRefGoogle Scholar
  32. 32.
    J. Chaos, A. Perea, J. Gonzalo, R. Dreyfus, C. Afonso, J. Perrière, Appl. Surf. Sci. 154, 473 (2000)CrossRefGoogle Scholar
  33. 33.
    K. Nashimoto, M.J. Cima, P.C. McIntyre, W.E. Rhine, J. Mater. Res. 10, 2564 (1995)CrossRefGoogle Scholar
  34. 34.
    Y. Shibata, K. Kaya, K. Akashi, M. Kanai, T. Kawai, S. Kawai, Jpn. J. Appl. Phys. 32, L745 (1993)CrossRefGoogle Scholar
  35. 35.
    V. Iyevlev, A. Kostyuchenko, M. Sumets, Proc. SPIE 7747, 77471J (2011)CrossRefGoogle Scholar
  36. 36.
    M. Tsirlin, J. Mater. Sci. 39, 3187 (2004)CrossRefGoogle Scholar
  37. 37.
    F.J. Gordillo-Vázquez, C.N. Afonso, J. Appl. Phys. 92, 7651 (2002)CrossRefGoogle Scholar
  38. 38.
    S.B. Ogale, R. Nawathey-Dikshit, S.J. Dikshit, S.M. Kanetkar, J. Appl. Phys. 71, 5718 (1992)CrossRefGoogle Scholar
  39. 39.
    M.A. Fakhri, E.T. Salim, U. Hashim, A.W. Abdulwahhab, Z.T. Salim, J. Mater. Sci.: Mater. Electron. 28, 16728 (2017)Google Scholar
  40. 40.
    D.A. Kiselev, R.N. Zhukov, A.S. Bykov, M.I. Voronova, K.D. Shcherbachev, M.D. Malinkovich, Y.N. Parkhomenko, Inorg. Mater. 50, 419 (2014)CrossRefGoogle Scholar
  41. 41.
    A.Z. Simões, M.A. Zaghete, B.D. Stojanovic, A.H. Gonzalez, C.S. Riccardi, M. Cantoni, J.A. Varela, J. Eur. Ceram. Soc. 24, 1607 (2004)CrossRefGoogle Scholar
  42. 42.
    A.Z. Simões, M.A. Zaghete, B.D. Stojanovic, C.S. Riccardi, A. Ries, A.H. Gonzalez, J.A. Varela, Mater. Lett. 57, 2333 (2003)CrossRefGoogle Scholar
  43. 43.
    S. Shandilya, M. Tomar, V. Gupta, J. Appl. Phys. 111, 10 (2012)CrossRefGoogle Scholar
  44. 44.
    V. Edon, D. Rèmiens, S. Saada, Appl. Surf. Sci. 256, 1455 (2009)CrossRefGoogle Scholar
  45. 45.
    C.B. Sawyer, C.H. Tower, Phys. Rev. 35, 269 (1930)CrossRefGoogle Scholar
  46. 46.
    K. Ellmer, T. Welzel, J. Mater. Res. 27, 765 (2012)CrossRefGoogle Scholar
  47. 47.
    S.H. Wemple, M. DiDomenico, I. Camlibel, Appl. Phys. Lett. 12, 209 (1968)CrossRefGoogle Scholar
  48. 48.
    K. Nassau, H.J. Levinstein, G.M. Loiacono, J. Phys. Chem. Solids 27, 989 (1966)CrossRefGoogle Scholar
  49. 49.
    L.Z. Hao, J. Zhu, W.B. Luo, H.Z. Zeng, Y.R. Li, Y. Zhang, Appl. Phys. Lett. 96, 032103 (2010)CrossRefGoogle Scholar
  50. 50.
    D.M. Smyth, Ferroelectrics 50, 93 (1983)CrossRefGoogle Scholar
  51. 51.
    W. Bollmann, Phys. Status Solidi 40, 83 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Voronezh State UniversityVoronezhRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia
  3. 3.Voronezh State Technical UniversityVoronezhRussia

Personalised recommendations