Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16539–16547 | Cite as

Influence of Cr3+ doping on multiferroic properties in the morphotropic phase boundary compositions of BiFeO3–PbTiO3 system

  • Naveen Kumar
  • Bastola Narayan
  • Tarang Mehrotra
  • Amit Kumar
  • Manoj Kumar
  • Rajeev Ranjan
  • Sanjeev KumarEmail author
  • Jyoti Shah
  • R. K. Kotnala
Article
  • 41 Downloads

Abstract

In this paper, we have investigated the effect of Cr3+ substitution on the crystal structure, microstructure, dielectric and magnetic behavior of the morphotropic phase boundary (MPB) composition of the multiferroic ceramic 0.675BiFe(1−x)CrxO3–0.325PbTiO3 (x = 0, 0.02 and 0.05). The average grain size of the specimens increased from ~ 150 nm for x = 0 to 470 nm for x = 0.05. Rietveld refinement analysis of the X-Ray powder diffraction patterns confirmed the coexistence of multiphase i.e. monoclinic Cc and tetragonal P4 mm polymorphs for all the compositions. The system exhibits weak ferromagnetism for x = 0.05. We estimated the magnetoelectric interaction constant (γ ~ 0.31) for x = 0.05 by Ginzburg–Landau theory. The value of magnetoelectric coupling coefficient (\(\alpha_{ME}\)) is found to be 0.054 mV/cm-Oe, 0.073 mV/cm-Oe, 0.133 mV/cm-Oe for x = 0, 00.02 and 0.05, respectively. High temperature dielectric data also reveals that Curie temperature decreases with increasing Cr3+ concentration.

Notes

Acknowledgements

Sanjeev Kumar is thankful to Punjab Engineering College (Deemed to be University), Chandigarh for providing financial assistance in the form of RIPA project. Sanjeev Kumar and Naveen Kumar are thankful to NRC-M (Materials Engineering, IISc, Bengaluru) for carrying out characterization work.

References

  1. 1.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)CrossRefGoogle Scholar
  2. 2.
    S. Fusil, V. Garcia, A. Barthelemy, M. Bibes, Annu. Rev. Mater. Res. 44, 91–116 (2014)CrossRefGoogle Scholar
  3. 3.
    M. Bibes, A. Barthelemy, Nat. Mater. 7, 425–426 (2008)CrossRefGoogle Scholar
  4. 4.
    S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13–20 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Kimura, Annu. Rev. Condens. Matter Phys. 3, 93–110 (2013)CrossRefGoogle Scholar
  6. 6.
    N.C. Bristowe, J. Varignon, D. Fontaine, E. Bousquet, Ph Ghosez, Nat. Commun. 6, 6677 (2015)CrossRefGoogle Scholar
  7. 7.
    J.F. Scott, J. Mater. Chem. 22, 4567–4574 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Ravindran, R. Vidaya, O. Eriksson, H. Fjellvag, Adv. Mater. 20, 1353–1356 (2008)CrossRefGoogle Scholar
  9. 9.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)CrossRefGoogle Scholar
  10. 10.
    D. Rahmedov, D. Wang, J. Iniguez, L. Bellaiche, Phys. Rev. Lett. 109, 037207 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Chauhan, M. Kumara, S. Chhokera, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Solid State Commun. 152, 525–529 (2012)CrossRefGoogle Scholar
  12. 12.
    M.S. Bernardo, T. Jardiel, M. Peiteado, F.J. Mompean, M. Garcia-Hernandez, M.A. Garcia, M. Villegas, A.C. Caballero, Chem. Mater. 25(9), 1533–1541 (2013)CrossRefGoogle Scholar
  13. 13.
    V.A. Reddy, N.P. Pathak, R. Nath, Solid State Commun. 171, 40–45 (2013)CrossRefGoogle Scholar
  14. 14.
    P. Kharel, S. Talebi, B. Ramachandran, A. Dixit, V.M. Naik, M.B. Sahana, C. Sudakar, R. Naik, M.S.R. Rao, G. Lawes, J. Phys. 21, 036001 (2009)Google Scholar
  15. 15.
    H. Deng, H. Deng, P. Yang, J. Chu, J. Mater. Sci. 23, 1215–1218 (2012)Google Scholar
  16. 16.
    F. Chang, N. Zhang, F. Yang, S. Wang, G. Song, J. Phys. D 40, 24 (2007)Google Scholar
  17. 17.
    J.K. Kim, S.S. Kim, W.-J. Kim, Appl. Phys. Lett. 88(132901), 1–3 (2006)Google Scholar
  18. 18.
    S.M. Wu et al., Nat. Mater. 9, 756–761 (2010)CrossRefGoogle Scholar
  19. 19.
    D. Sando, A. Barthelemy, M. Bibes, J. Phys. 26, 473201 (2014)Google Scholar
  20. 20.
    A. Kumar et al., J. Phys. 21, 382204 (2009)Google Scholar
  21. 21.
    J.F. Scott, NPG Asia Mater. 5(e72), 1–11 (2013)Google Scholar
  22. 22.
    D. Evans et al., Nat. Commun. 4, 1534 (2013)CrossRefGoogle Scholar
  23. 23.
    L. Keeney et al., J. Am. Ceram. Soc. 96, 2339–2357 (2013)CrossRefGoogle Scholar
  24. 24.
    K. Oka et al., Int. Ed. 51, 7977–7980 (2012)CrossRefGoogle Scholar
  25. 25.
    R. Guo et al., Phys. Rev. Lett. 84, 5423 (2000)CrossRefGoogle Scholar
  26. 26.
    D. Damjanovic, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq Control 56, 1574–1585 (2009)CrossRefGoogle Scholar
  27. 27.
    J.C. Wojdel, J. Iniguez, Phys. Rev. Lett. 105(3), 037208 (2010)CrossRefGoogle Scholar
  28. 28.
    W.M. Zhu, H.Y. Guo, Z.G. Ye, Phys. Rev. B 78, 014401 (2008)CrossRefGoogle Scholar
  29. 29.
    T.P. Comyn et al., Appl. Phys. Lett. 93, 232901 (2008)CrossRefGoogle Scholar
  30. 30.
    M. Yashima, K. Omoto, J. Chen, H. Kato, X. Xing, Chem. Mater. 23, 3135 (2011)CrossRefGoogle Scholar
  31. 31.
    V. Kothai, A. Senyshynand, R. Ranjan, J. Appl. Phys. 113(8), 084102 (2013)CrossRefGoogle Scholar
  32. 32.
    Carvajal RJ, FullPROF A (2011) Rietveld refinement and pattern matching analysis program laboratories. Leon Brillouin [CEA-CNRS], FranceGoogle Scholar
  33. 33.
    D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313 (2003)CrossRefGoogle Scholar
  34. 34.
    S. Bhattacharjee, D. Pandey, J. Appl. Phys. 107, 124112 (2010)CrossRefGoogle Scholar
  35. 35.
    Y.M. Jin, Y.U. Wang, A.G. Khachaturyan, J.F. Li, D. Viehland, Phys. Rev. Lett. 91, 197601 (2003)CrossRefGoogle Scholar
  36. 36.
    H. Amorin et al., J. Appl. Phys. 115, 104104 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Bhattacharje, K. Taji, C. Moriyoshi, Y. Kuroiwa, D. Pandey, Phys. Rev. B 84, 104116 (2011)CrossRefGoogle Scholar
  38. 38.
    S.S. Arafat, S. Ibrahim, Mater. Sci. Appl. 8, 716–725 (2017)Google Scholar
  39. 39.
    V.F. Freitas et al., J. Am. Ceram. Soc. 94, 754–758 (2011)CrossRefGoogle Scholar
  40. 40.
    J.B. Li, G.H. Rao, J.K. Liang, Y.H. Liu, J. Luo, J.R. Chen, Appl. Phys. Lett. 90, 162513 (2007)CrossRefGoogle Scholar
  41. 41.
    C.A. Randall, A.S. Bhalla, Jpn. J. Appl. Phys. 29(2R), 327 (1990)CrossRefGoogle Scholar
  42. 42.
    Chikazumi S, Ohta K, Adachi K, Tsuya N, Ishikawa Y (1975) Asakura-syoten, Tokyo (in Japanese), p 63Google Scholar
  43. 43.
    S. Layek, S. Saha, H.C. Verma, AIP Adv. 3, 032140 (2013)CrossRefGoogle Scholar
  44. 44.
    K.C. Verma, J. Shah, R.K. Kotnala, J. Nanosci. Nanotechnol. 15, 1587–1590 (2015)CrossRefGoogle Scholar
  45. 45.
    A. Kumar, K.L. Yadav, Mater. Sci. Eng. 176, 227–230 (2011)CrossRefGoogle Scholar
  46. 46.
    M.M. Kumar, A. Srinivas, S.V. Suryanarayana, G.S. Kumar, T. Bhimasankaran, Bull. Mater. Sci. 21, 251–255 (1998)CrossRefGoogle Scholar
  47. 47.
    M. Kumar, K.L. Yadav, J. Phys. Chem. Solids 68, 1791–1795 (2007)CrossRefGoogle Scholar
  48. 48.
    R. Grossinger, G.V. Duong, R.S. Turtelli, J. Magn. Magn. Mater. 320, 1972–1977 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Naveen Kumar
    • 1
  • Bastola Narayan
    • 2
  • Tarang Mehrotra
    • 1
  • Amit Kumar
    • 2
  • Manoj Kumar
    • 1
  • Rajeev Ranjan
    • 2
  • Sanjeev Kumar
    • 1
    Email author
  • Jyoti Shah
    • 3
  • R. K. Kotnala
    • 3
  1. 1.Department of Applied SciencesPunjab Engineering College (Deemed to be University)ChandigarhIndia
  2. 2.Department of Materials EngineeringIndian Institute of ScienceBengaluruIndia
  3. 3.National Physical LaboratoryNew DelhiIndia

Personalised recommendations