Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16518–16526 | Cite as

EPR and optical studies of pure MgFe2O4 and ZnO nanoparticles and MgFe2O4–ZnO nanocomposite

  • Garima Vaish
  • Ram KripalEmail author
  • Lokendra Kumar
Article
  • 53 Downloads

Abstract

A comprehensive EPR and optical studies of pure MgFe2O4 and ZnO nanoparticles and MgFe2O4–ZnO nanocomposite have been done in order to explore its future possibilities of applications. Pure MgFe2O4 and ZnO nanoparticles have been synthesized using Sol–Gel method. MgFe2O4–ZnO nanocomposite has been prepared using water dispersed pure MgFe2O4 nano seeds (previously synthesized) by ultrasonication. Effect of introducing zinc oxide in pure MgFe2O4 nanomatrix on structural properties was investigated using X-ray diffraction and transmission electron microscopy techniques. They confirm the cubic spinel structure of both pure and ZnO imbedded MgFe2O4 samples. UV–Visible and photoluminescence spectra show that the band gap of composite is tuned and more useful for photocatalytic applications. FTIR spectra indicate the presence of absorption bands in the range 390–561 cm−1, which is a common feature of spinel ferrite. The energy dispersive spectroscopy analysis confirms the composition of specimen. Further, the investigation of electronic and magnetic properties of the powdered samples is done using electron paramagnetic resonance spectroscopy. Change in g value, peak-to-peak line width (Hpp), resonance field (Hr) and spin–spin relaxation time (T2) give useful information.

Notes

Acknowledgements

The authors are grateful to the Head, SAIF, I. I. T. Mumbai, Powai, Mumbai for providing the facility of EPR spectrometer. One of the authors, Garima Vaish is thankful to the Head, Department of Physics, University of Allahabad, Allahabad for providing departmental facilities.

References

  1. 1.
    G. Barrera, P. Tiberto, P. Allia, B. Bonelli, S. Esposito, A. Marocco, M. Pansini, Y. Leterrier, Review: magnetic properties of nanocomposites. Appl. Sci. 9, 212 (2019)CrossRefGoogle Scholar
  2. 2.
    M. Rostami, M.H.M. Ara, The dielectric, magnetic and microwave absorption properties of Cu-substituted Mg-Ni spinel ferrite-MWCNT nanocomposites. Ceram. Int. (2019).  https://doi.org/10.1016/j.ceramint.2019.01.056 Google Scholar
  3. 3.
    A.K. Zak, A.M. Hashim, M. Darroudi, Optical properties of ZnO/BaCO3 nanocomposites in UV and visible regions nanoscale. Res. Lett. 9, 399 (2014)Google Scholar
  4. 4.
    A.M. Mohammad, S.M.A. Ridha, T.H. Mubarak, Dielectric properties of Cr-substituted cobalt ferrite nanoparticles synthesis by citrate-gel auto combustion method. Int. J. Appl. Eng. Res. 13(8), 6026–6035 (2018)Google Scholar
  5. 5.
    L. Zheng, K. Fang, M. Zhang, Z. Nan, L. Zhao, D. Zhou, M. Zhub, W. Li, Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic properties. RSC Adv. 8, 39177–39181 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Amiri, M.S. Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 265, 29–44 (2019)CrossRefGoogle Scholar
  7. 7.
    P. Tiwari, R. Verma, S.N. Kane, T. Tatarchuk, F. Mazaleyrat, Effect of Zn addition on structural, magnetic properties and anti-structural modeling of magnesium-nickel nano ferrites. Mater. Chem. Phys. 229, 78–86 (2019)CrossRefGoogle Scholar
  8. 8.
    D.K. Mahato, Ac conductivity analysis of nanocrystallite MgFe2O4 ferrite. Mater. Today 5(3), 9191–9195 (2018)Google Scholar
  9. 9.
    N. Sivakumar, A. Narayanasamya, J.-M. Greneche, R. Murugaraj, Y.S. Lee, Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. J. Alloy. Compd. 504, 395–402 (2010)CrossRefGoogle Scholar
  10. 10.
    R.P. Singha, C. Venkataraju, Effect of calcinations on the structural and magnetic properties of magnesium ferrite nanoparticles prepared by sol gel method. Chin. J. Phys. 56, 2218–2225 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Balavijayalakshmi, Greeshma, Synthesis and characterization of magnesium ferrite nanoparticles by co-precipitation method. J. Environ. Nanotechnol. 2(2), 53–55 (2013)CrossRefGoogle Scholar
  12. 12.
    S.I. Hussein, A.S. Elkady, M.M. Rashad, A.G. Mostafa, R.M. Megahid, Structural and magnetic properties of magnesium ferrite nanoparticles prepared via EDTA-based sol–gel reaction. J. Magn. Magn. Mater. 379, 9–15 (2015)CrossRefGoogle Scholar
  13. 13.
    N.R. Su, P. Lv, M. Li, X. Zhang, M. Li, J. Niu, Fabrication of MgFe2O4–ZnO heterojunction photocatalysts for application of organic pollutants. Mater. Lett. 122, 201–204 (2014)CrossRefGoogle Scholar
  14. 14.
    S. Maensiri, M. Sangmanee, A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning nanoscale. Res. Lett. 4, 221–228 (2009)Google Scholar
  15. 15.
    S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett. 3, 30 (2013)CrossRefGoogle Scholar
  16. 16.
    J. Jiang, J. Pi, J. Cai, Review: the advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. (2018).  https://doi.org/10.1155/2018/1062562 Google Scholar
  17. 17.
    J.N. Hasnidawani, H.N. Azlina, H. Norita, N.N. Bonnia, S. Ratim, E.S. Ali, Synthesis of ZnO nanostructures using sol-gel method. Procedia Chem. 19, 211–216 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Janotti, Walle C.G. Vde, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Arakha, J. Roy, P.S. Nayak, B. Mallick, S. Jha, Free radical biology and medicine. Free Radic. Biol. Med. 110, 42–53 (2017)CrossRefGoogle Scholar
  20. 20.
    M.K. Debanath, S. Karmakar, Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Mater. Lett. 111, 116–119 (2013)CrossRefGoogle Scholar
  21. 21.
    M.D. Tyona, R.U. Osuji, P.U. Asogwa, S.B. Jambure, F.I. Ezema, Structural modification and band gap tailoring of zinc oxide thin films using copper impurities. J. Solid State Electrochem. (2017).  https://doi.org/10.1007/s10008-017-3533-3 Google Scholar
  22. 22.
    N. Hana, Y. Tiana, X. Wua, Y. Chen, Improving humidity selectivity in formaldehyde gas sensing by a two-sensor array made of Ga-doped ZnO. Sens. Actuators B 138, 228–235 (2009)CrossRefGoogle Scholar
  23. 23.
    A. Al-Kahlout, ZnO nanoparticles and porous coatings for dye-sensitized solar cell application: photoelectrochemical characterization. Thin Solid Films 520, 1814–1820 (2012)CrossRefGoogle Scholar
  24. 24.
    H.H. Yun, J.S. Kim, E.H. Kim, S.K. Lee, J.W. Kim, H.J. Lim, S.M. Koo, Enhanced photocatalytic activity of TiO2@mercaptofunctionalized silica toward colored organic dyes. J. Mater. Sci. 50, 2577–2586 (2015)CrossRefGoogle Scholar
  25. 25.
    G. Nabiyouni, D. Ghanbari, J. Ghasemi, A. Yousofnejad, Microwave-assisted synthesis of MgFe2O4-ZnO nanocomposite and its photocatalyst investigation in methyl orange degradation. J. Nano Struct. 5(3), 289–295 (2015)Google Scholar
  26. 26.
    A. Loganathan, K. Kumar, Effects on structural, optical, and magnetic properties of pure and Sr-substituted MgFe2O4 nanoparticles at different calcinations temperatures. Appl. Nanosci. 6, 629–639 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Mallesh, D. Prabu, V. Srinivas, Thermal stability and magnetic properties of MgFe2O4@ZnO nanoparticles. AIP Adv. 7, 056103 (2017)CrossRefGoogle Scholar
  28. 28.
    A.I. Ahmed, A.M.A. Siddig, A.A. Mirghni, M.I. Omer, a Abdelrahman, A.A. Elbadawi, Structural and optical properties of Mg1-xZnxFe2O4 nano-ferrites synthesized using co-precipitation method. Adv. Nanopart. 4, 45–52 (2015)CrossRefGoogle Scholar
  29. 29.
    F.A. Ahmed, L.N. Singh, Effect of Ni substitution on structural and magnetic properties of Mn-Zn ferrite nanoparticles. J. Mater. Sci. Surf. Eng. 6(4), 825–830 (2018)Google Scholar
  30. 30.
    S.K. Sharma, R. Kumar, V.V.S. Kumar, S.N. Dolia, Size dependent magnetic behaviour of nanocrystalline spinel ferrite Mg0.95Mn0.05Fe2O4. Indian J. Pure Appl. Phys. 45, 16–20 (2007)Google Scholar
  31. 31.
    B. Issa, I.M. Obaidat, B.A. Albiss, Y. Haik, Magnetic nanoparticles: surface effects and properties related to biomedicine application. Int. J. Mol. Sci. 14, 21266–21305 (2013)CrossRefGoogle Scholar
  32. 32.
    A.-M. AlTurki, Superparamagnetic MnFe2O4 and MnFe2O4 NPs/ABS nanocomposite: preparation, thermal stability and exchange bias effect. Indian J. Sci. Technol. (2018).  https://doi.org/10.17485/ijst/2018/v11i19/122884 Google Scholar
  33. 33.
    A. Franco Jr., H.V.S. Pessoni, F.O. Neto, Enhanced high temperature magnetic properties of ZnO _ CoFe2O4 ceramic composite. J. Alloys Compd. 680, 198–205 (2016)CrossRefGoogle Scholar
  34. 34.
    T.J. Castro, S.W. daSilva, F. Nakagomi, N.S. Moura, A. Franco Jr., P.C. Morais, Structural and magnetic properties of ZnO–CoFe2O4 nanocomposites. J. Magn. Magn. Mater. 389, 27–33 (2015)CrossRefGoogle Scholar
  35. 35.
    A.K. Gupta, R. Kripal, EPR and photoluminescence properties of Mn2+ doped CdS nanoparticles synthesized via co-precipitation method. Spectrochim. Acta A 96, 626–631 (2012)CrossRefGoogle Scholar
  36. 36.
    A.K. Verma, D. Singh, S. Singh, R.R. Yadav, Surfactant-free synthesis and experimental analysis of Mn-doped ZnO–glycerol nanofluids: an ultrasonic and thermal study. Appl. Phys. A 125, 253 (2019)CrossRefGoogle Scholar
  37. 37.
    W.R. Agami, Effect of neodymium substitution on the electric and dielectric properties of Mn-Ni-Zn ferrite. Physica B (2018).  https://doi.org/10.1016/j.physb.2018.01.021 Google Scholar
  38. 38.
    D. Guan, J. Li, X. Gao, C. Yuan, Effects of amorphous and crystalline MoO3 coatings on the Li-ion insertion behavior of a TiO2 nanotube anode for lithium ion batteries. RSC Adv. 4, 4055 (2014)CrossRefGoogle Scholar
  39. 39.
    M.A. Johar, R.A. Afzal, A.A. Alazba, U. Manzoor, Review article photocatalysis and bandgap engineering using ZnO nanocomposites. Adv. Mater. Sci. Eng. (2015).  https://doi.org/10.1155/2015/934587 Google Scholar
  40. 40.
    B.D. Cardoso et al., Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin. R. Soc. Open Sci. 5, 181017 (2018)CrossRefGoogle Scholar
  41. 41.
    Y. Wang, H. Yana, Q. Zhang, Enhanced visible light irradiation photocatalytic performance of MgFe2O4 after growing with ZnO nanoshell and silver nanoparticles. J. Chin. Chem. Soc. (2017).  https://doi.org/10.1002/jccs.201700110) Google Scholar
  42. 42.
    H.M. El-Sayed, W.R. Agami, Controlling of optical energy gap of Co-ferrite quantum dots in poly (methyl methacrylate) matrix. Superlattices Microstruct. (2015).  https://doi.org/10.1016/j.spmi.2015.04.013 Google Scholar
  43. 43.
    M.E. Sadat et al., Photoluminescence and photothermal effect of Fe3O4 nanoparticles for medical imaging and therapy. Appl. Phys. Lett. 105, 091903 (2014)CrossRefGoogle Scholar
  44. 44.
    W.R. Agami, M.A. Ashmawy, A.A. Sattar, Structural, IR, and magnetic studies of annealed Li-ferrite nanoparticles. J. Mater. Eng. Perform. (2013).  https://doi.org/10.1007/s11665-013-0754-1 Google Scholar
  45. 45.
    M.G. Naseri, M.H.M. Ara, E.B. Saion, A.H. Shaari, Superparamagnetic magnesium ferrite nanoparticles fabricated by a simple, thermal-treatment method. J. Magn. Magn. Mater. 350, 141–147 (2014)CrossRefGoogle Scholar
  46. 46.
    S. Pandey, R. Kripal, EPR, optical absorption and superposition model study of Fe3+ doped strontium nitrate single crystals. J. Magn. Reson. 209, 220–226 (2011)CrossRefGoogle Scholar
  47. 47.
    K.K. Bamzai, G. Kour, B. Kaur, M. Arora, R.P. Pant, Infrared spectroscopic and electron paramagnetic resonance studies on Dy substituted magnesium ferrite. J. Magn. Magn. Mater. 345, 255–260 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AllahabadAllahabadIndia
  2. 2.Faculty of ScienceNehru Gram Bharati (DU)AllahabadIndia

Personalised recommendations