Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16510–16517 | Cite as

ZnO nanosheet arrays/graphene foam: voltammetric determination of dopamine in the presence of ascorbic acid and uric acid

  • Shuo HuangEmail author
  • Peng Fei Wu
  • Hong Yan Yue
  • Xin Gao
  • Shan Shan Song
  • Xin Rui Guo
  • Hong Tao Chen
Article
  • 37 Downloads

Abstract

Nickel foam (NF) was used as sacrificial template to synthesize graphene foam (GF) by chemical vapor deposition (CVD). ZnO NSAs were grown on the GF by hydrothermal synthesis to fabricate ZnO NSA/GF, which was used to detect dopamine in the presence of ascorbic acid and uric acid. The inter-connected ZnO NSAs with the sheet size of ~ 10 μm and thickness of ~ 500 nm uniformly distributed on the GF. The ZnO NSA/GF shows a sensitivity of 0.95 μA μM−1 in the concentration range of 0–80 μM and a measured limit of detection of 1 μM for determination of dopamine. Furthermore, the prepared electrode displays a reliable anti-interference to ascorbic acid and uric acid. It also shows an excellent reproducibility and long-time stability. The ZnO NSA/GF electrode was applied in human urine samples and exhibited satisfied recoveries.

Notes

Acknowledgements

This work is supported by the Postdoctoral Initial Founding of Heilongjiang Province (LBH-Q14117), the Foundation for Selected Overseas Chinese Scholar, Ministry of Personal of Heilongjiang Province (2018383) and the fundamental research foundation for University of Heilongjiang province (LGYC2018JQ012).

References

  1. 1.
    T.R. Silva, I.C. Vieira, A biosensor based on gold nanoparticles stabilized in poly(allylamine hydrochloride) and decorated with laccase for determination of dopamine. Analyst 141, 216–224 (2016)CrossRefGoogle Scholar
  2. 2.
    M. Noroozifar, M. Khorasani-Motlagh, R. Akbari, P.M. Bemanadi, Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. Biosens. Bioelectron. 28, 56–63 (2011)CrossRefGoogle Scholar
  3. 3.
    I.M. Taylor, E.M. Robbins, K.A. Catt, P.A. Cody, C.L. Happe, X.T. Cui, Enhanced dopamine detection sensitivity by PEDOT/graphene oxide coating on in vivo carbon fiber electrodes. Biosens. Bioelectron. 89, 400–410 (2017)CrossRefGoogle Scholar
  4. 4.
    Y. Xin, Z. Li, W. Wu, B. Fu, H. Wu, Z. Zhang, Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain. Biosens. Bioelectron. 87, 396–403 (2017)CrossRefGoogle Scholar
  5. 5.
    X. Yan, Y. Gu, C. Li, L. Tang, B. Zheng, Y. Li, Z. Zhang, M. Yang, Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine. Biosens. Bioelectron. 77, 1032–1038 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Li, H. Song, L. Zhang, P. Zuo, B. Ye, J. Yao, W. Chen, Supportless electrochemical sensor based on molecularly imprinted polymer modified nanoporous microrod for determination of dopamine at trace level. Biosens. Bioelectron. 78, 308–314 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Ma, M. Zhao, B. Cai, W. Wang, Z. Ye, J. Huang, 3D graphene network@WO3 nanowire composites: a multifunctional colorimetric and electrochemical biosensing platform. Chem. Commun. 50, 11135–11138 (2014)CrossRefGoogle Scholar
  8. 8.
    Y.X. Chen, K.J. Huang, L.L. He et al., Tetrahedral DNA probe coupling with hybridization chain reaction for competitive thrombin aptasensor. Biosens. Bioelectron. 100, 274–281 (2018)CrossRefGoogle Scholar
  9. 9.
    T. Yang, H. Chen, C. Jing, S. Luo, W. Li, K. Jiao, Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sens. Actuators B 249, 451–457 (2017)CrossRefGoogle Scholar
  10. 10.
    H.Y. Yue, P.F. Wu, S. Huang et al., Electrochemical determination of dopamine in the presence of uric acid using WS2 nanospheres-carbon nanofibers. J. Electroanal. Chem. 833, 427–432 (2019)CrossRefGoogle Scholar
  11. 11.
    S. Huang et al., Highly selective and sensitive determination of dopamine in the presence of ascorbic acid using a 3D graphene foam electrode. Electroanalysis 26, 184–190 (2014)CrossRefGoogle Scholar
  12. 12.
    S. Huang et al., ZnO nanosheet balls anchored onto graphene foam for electrochemical determination of dopamine in the presence of uric acid. Sens. Actuators B 277, 381–387 (2018)CrossRefGoogle Scholar
  13. 13.
    W. Zhao et al., Synthesis of the 3D graphene foam by chemical vapor deposition using nickel powders and application for simultaneous electrochemical detection of dopamine and uric acid. Ionics 254, 1813–1823 (2019)Google Scholar
  14. 14.
    H.Y. Yue et al., Preparation of three-dimensional hollow graphene balls and simultaneous electrochemical determination of dopamine and uric acid. J. Mater. Sci. 2914, 12330–12339 (2018)Google Scholar
  15. 15.
    H.Y. Yue et al., Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode. Anal. Biochem. 488, 22–27 (2015)CrossRefGoogle Scholar
  16. 16.
    H.Y. Yue et al., A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets. J. Mater. Sci. 305, 5000–5007 (2019)Google Scholar
  17. 17.
    H.Y. Yue et al., Golf ball-like MoS2 nanosheet arrays anchored onto carbon nanofibers for electrochemical detection of dopamine. Microchim. Acta 2019, 378–385 (1866)Google Scholar
  18. 18.
    Z.H. Sheng, X.Q. Zheng, J.Y. Xu, W.J. Bao, F.B. Wang, X.H. Xia, Electrochemical sensor based on nitrogen doped graphene: simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens. Bioelectron. 34, 125–131 (2012)CrossRefGoogle Scholar
  19. 19.
    X. Zhang, Y.C. Zhang, L.X. Ma, One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens. Actuators B 227, 488–496 (2016)CrossRefGoogle Scholar
  20. 20.
    X. Chen, G. Zhang, L. Shi, S. Pan, W. Liu, H. Pan, Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Mater. Sci. Eng. C 65, 80–89 (2016)CrossRefGoogle Scholar
  21. 21.
    A. Roychoudhury, S. Basu, S.K. Jha, Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens. Bioelectron. 84, 72–81 (2016)CrossRefGoogle Scholar
  22. 22.
    H. Li, Y. Wang, D. Ye, J. Luo, B. Su, S. Zhang, J. Kong, An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 127, 255–261 (2014)CrossRefGoogle Scholar
  23. 23.
    E. Lee, H.C. Lee, S.B. Jo, H. Lee, N.S. Lee, C.G. Park, S.K. Lee, H.H. Kim, H. Bong, K. Cho, Heterogeneous solid carbon source-assisted growth of high-quality graphene via CVD at low temperatures. Adv. Funct. Mater. 26, 562–568 (2016)CrossRefGoogle Scholar
  24. 24.
    X. Wang, D. Gao, M. Li, H. Li, C. Li, X. Wu, B. Yang, CVD graphene as an electrochemical sensing platform for simultaneous detection of biomolecules. Sci. Rep. 7, 7044 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang, P. Chen, 3D graphene foam as a monolithic and macroporous carbon electrode for electrochemical sensing. ACS Appl. Mater. Interfaces 4, 3129–3133 (2012)CrossRefGoogle Scholar
  26. 26.
    L. Zhu, Y. Li, W. Zeng, Hydrothermal synthesis of hierarchical flower-like ZnO nanostructure and its enhanced ethanol gas-sensing properties. Appl. Surf. Sci. 427, 281–287 (2018)CrossRefGoogle Scholar
  27. 27.
    T. Rakshit, S.P. Mondal, I. Manna, S.K. Ray, CdS-decorated ZnO nanorod heterostructures for improved hybrid photovoltaic devices. ACS Appl. Mater. Interfaces 4, 6085–6095 (2012)CrossRefGoogle Scholar
  28. 28.
    R. Ahmad, N. Tripathy, N.K. Jang, G. Khang, Y.B. Hahn, Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens. Actuators B 206, 146–151 (2015)CrossRefGoogle Scholar
  29. 29.
    B. Rezaei, L. Shams-Ghahfarokhi, E. Havakeshian, A.A. Ensafi, An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 158, 42–50 (2016)CrossRefGoogle Scholar
  30. 30.
    S.Y. Gao, H.D. Li, J.J. Yuan, Y.A. Li, X.X. Yang, J.W. Liu, ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction. Appl. Surf. Sci. 256, 2781–2785 (2010)CrossRefGoogle Scholar
  31. 31.
    M. Arvand, N. Ghodsi, A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of L-dopa in mouse brain extract and pharmaceuticals. J. Solid State Electrochem. 17, 775–784 (2013)CrossRefGoogle Scholar
  32. 32.
    H. Beitollahi, N.F. Garkani, Graphene oxide/ZnO nano composite for sensitive and selective electrochemical sensing of levodopa and tyrosine using modified graphite screen printed electrode. Electroanalysis 28, 2237–2244 (2016)CrossRefGoogle Scholar
  33. 33.
    X. Wang, L. Huang, Y. Zhao, Y. Zhang, G. Zhou, Synthesis of mesoporous ZnO nanosheets via facile solvothermal method as the anode materials for lithium-ion batteries. Nanoscale Res. Lett. 11, 37 (2016)CrossRefGoogle Scholar
  34. 34.
    Y. Sun, S. Ge, H. Huang, H. Zheng, Z. Jin, J. Shan, C. Gu, X. Huang, F. Meng, Novel volatile organic compound (VOC) sensor based on Ag-decorated porous single-crystalline ZnO nanosheets. Mater. Express. 6, 191–197 (2016)CrossRefGoogle Scholar
  35. 35.
    L. Wang, K. Tang, M. Zhang, J. Xu, Facile synthesis of Mn-doped ZnO porous nanosheets as anode materials for lithium ion batteries with a better cycle durability. Nanoscale Res. Lett. 10, 983 (2015)Google Scholar
  36. 36.
    H.Y. Yue, S. Huang, J. Chang, C.J. Heo, F. Yao, S. Adhikari, F. Gunes, L.C. Liu, T.H. Lee, E.S. Oh, B. Li, J.J. Zhang, T.Q. Huy, N.V. Lua, Y.H. Lee, ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson’s disease. ACS Nano 8, 1639–1646 (2014)CrossRefGoogle Scholar
  37. 37.
    T. Yang, M. Chen, Q. Kong, X. Luo, K. Jiao, Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens. Bioelectron. 89, 538–544 (2017)CrossRefGoogle Scholar
  38. 38.
    H. Huang, H. Wang, B. Li, X. Mo, H. Long, Y. Li, H. Zhang, D.L. Carroll, G. Fang, Seedless synthesis of layered ZnO nanowall networks on Al substrate for white light electroluminescence. Nanotechnology 24, 315203 (2013)CrossRefGoogle Scholar
  39. 39.
    J.B. Raoof, N. Teymoori, M.A. Khalilzadeh, R. Ojani, A high sensitive electrochemical nanosensor for simultaneous determination of glutathione, NADH and folic acid. Mater. Sci. Eng. C 47, 77–84 (2015)CrossRefGoogle Scholar
  40. 40.
    X.C. Dong, Y.F. Cao, J. Wang, M.B. Chan-Park, L.H. Wang, W. Huang, P. Chen, Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2, 4364–4369 (2012)CrossRefGoogle Scholar
  41. 41.
    Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 10, 424–428 (2011)CrossRefGoogle Scholar
  42. 42.
    C.D. Wang, J.L. Xu, M.F. Yuen, J. Zhang, Y.Y. Li, X.F. Chen, W. Zhang, Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv. Funct. Mater. 24, 6372–6380 (2014)CrossRefGoogle Scholar
  43. 43.
    Q. Lian, Z. He, Q. He, A. Luo, K. Yan, D. Zhang, X. Lu, X. Zhou, Simultaneous determination of ascorbic acid, dopamine and uric acid based on tryptophan functionalized graphene. Anal. Chim. Acta 823, 32–39 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shuo Huang
    • 1
    • 2
    Email author
  • Peng Fei Wu
    • 2
  • Hong Yan Yue
    • 2
  • Xin Gao
    • 2
  • Shan Shan Song
    • 2
  • Xin Rui Guo
    • 2
  • Hong Tao Chen
    • 2
  1. 1.Department of NeurologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China

Personalised recommendations