Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16502–16509 | Cite as

Effect of annealing atmosphere on structural and multiferroic properties of BiFeO3 thin film prepared by RF magnetron sputtering

  • Xiaoling Deng
  • Zhixin Zeng
  • Ruicheng Xu
  • Xiaofeng Qin
  • Xinxin Li
  • Yongqiang Wang
  • Rongli Gao
  • Zhenhua Wang
  • Gang Chen
  • Wei Cai
  • Chunlin FuEmail author
Article
  • 28 Downloads

Abstract

BFO thin films were deposited on Pt substrate by RF magnetron sputtering technology. The effects of annealing atmosphere on the phase evolution, microstructure, surface element chemical state, leakage current density, dielectric, ferroelectric and magnetic properties of BFO thin films were systematically investigated. The XRD analyses reveal that O2 annealing atmosphere benefits to prepare single phase BFO thin film compared with air. AFM images demonstrate that BFO thin film annealed in O2 shows smaller grain size and better surface roughness than that annealed in air. The XPS analyses clarify that Fe2+ and Fe3+ ions are co-existed in both obtained BFO thin films, while BFO thin film annealed in O2 shows lower Fe2+ and oxygen vacancy concentration. Comparing with BFO thin film annealed in air, BFO thin film annealed in O2 shows a lower leakage current density of 4.4 × 10−6 A/cm2 with enhanced dielectric, ferroelectric and magnetic properties. Our results provide useful reference for practical application of BFO thin film prepared by RF magnetron sputtering.

Notes

Acknowledgements

This work has been supported by the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the Chongqing Research Program of Basic Research and Frontier Technology (cstc2018jcyjAX0416), the Excellent Talent Project in University of Chongqing (2017-35), the Program for Technical and Scientific Innovation Led by Academician of Chongqing, the Latter Foundation Project of Chongqing University of Science & Technology (CKHQZZ2008002), the Scientific and Technological Research Young Program of Chongqing Municipal Education Commission (KJQN201801509), the Program for Innovation Teams in University of Chongqing, China (CXTDX201601032), the Science and Technology Innovation Project of Social Undertakings and Peoples Livelihood Guarantee of Chongqing (cstc2017shmsA0192), the Scientific & Technological Achievements Foundation Project of Chongqing University of Science & Technology (CKKJCG2016328) and the postgraduate science and technology innovation project of Chongqing University of Science & Technology (YKJCX1820214).

References

  1. 1.
    R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale 10(26), 11750–11759 (2018)CrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)CrossRefGoogle Scholar
  3. 3.
    R.L. Gao, L. Bai, Z.Y. Xu, Q.M. Zhang, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, C.L. Fu, Adv. Electron. Mater. 4(6), 1800030 (2018)CrossRefGoogle Scholar
  4. 4.
    R. Ramesh, N. Spaldin, Nat. Mater. 6, 21 (2007)CrossRefGoogle Scholar
  5. 5.
    R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, X.D. Luo, Y. Qiu, Wei Cai. J. Mater. Sci. 30(11), 10256–10273 (2019)Google Scholar
  6. 6.
    C. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  7. 7.
    R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, Composite B 166, 204–212 (2019)CrossRefGoogle Scholar
  8. 8.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wutting, R. Ramesh, Science 299, 1719 (2003)CrossRefGoogle Scholar
  9. 9.
    R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014)CrossRefGoogle Scholar
  10. 10.
    K.Y. Yun, M. Noda, M. Okuyama, Appl. Phys. Lett. 83, 3981 (2003)CrossRefGoogle Scholar
  11. 11.
    J.G. Wu, J. Wang, D.Q. Xiao, J.G. Zhu, J. Appl. Phys. 110, 064104 (2011)CrossRefGoogle Scholar
  12. 12.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nat. Mater. 5, 823 (2006)CrossRefGoogle Scholar
  14. 14.
    G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007)CrossRefGoogle Scholar
  15. 15.
    S. Gupta, M. Tomar, V. Gupta, A.R. James, M. Pal, R. Guo, A. Bhalla, J. Appl. Phys. 115, 234105 (2014)CrossRefGoogle Scholar
  16. 16.
    X. Tang, J. Dai, X. Zhu, J. Lin, Q. Chang, D. Wu, W. Song, Y. Sun, J. Am. Ceram. Soc. 95, 538 (2012)CrossRefGoogle Scholar
  17. 17.
    R.Y. Zheng, C.H. Sim, J. Wang, S. Ramakrisha, J. Am. Ceram. Soc. 91, 3240 (2008)CrossRefGoogle Scholar
  18. 18.
    P. Suresh, S. Srinath, J. Appl. Phys. 113, 17D920 (2013)CrossRefGoogle Scholar
  19. 19.
    X. Deng, W. Wang, R. Gao, W. Cai, G. Chen, C. Fu, J. Mater. Sci. 29, 6870 (2018)Google Scholar
  20. 20.
    J. Qi, Y. Zhang, Y. Wang, Y. Liu, M. Wei, J. Zhang, M. Feng, J. Yang, J. Mater. Sci. 28, 17490 (2017)Google Scholar
  21. 21.
    S.S. Rajput, R. Katoch, K.K. Sahoo, G.N. Sharma, S.K. Singh, R. Gupta, A. Garg, J. Alloys Compd. 621, 339 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Sun, W. Cai, R. Gao, X. Cao, F. Wang, T. Lei, X. Deng, G. Chen, H. He, C. Fu, J. Mater. Sci. 28, 12039 (2017)Google Scholar
  23. 23.
    K. Prashanthi, M. Gupta, Y.Y. Tsui, T. Thundat, Appl. Phys. A 110, 903 (2013)CrossRefGoogle Scholar
  24. 24.
    A.Z. Simões, C.S. Riccardi, M.L. Dos Santos, F. González Garcia, E. Longo, J.A. Varela, Mater. Res. Bull. 44, 1747 (2009)CrossRefGoogle Scholar
  25. 25.
    T. Lei, W. Cai, C. Fu, H. Ren, Y. Zhang, Y. Sun, G. Li, J. Mater. Sci. 26, 9495 (2015)Google Scholar
  26. 26.
    K. Ahadi, S.M. Mahdavi, A. Nemati, M. Kianinia, J. Mater. Sci. 22, 815 (2011)Google Scholar
  27. 27.
    K. Liu, W. Cai, C. Fu, K. Lei, L. Xiang, X. Gong, J. Alloys Compd. 605, 21 (2014)CrossRefGoogle Scholar
  28. 28.
    X. Deng, J. Huang, Y. Sun, K. Liu, R. Gao, W. Cai, C. Fu, J. Alloys Compd. 684, 510 (2016)CrossRefGoogle Scholar
  29. 29.
    M.Y. Shami, M.S. Awanm, M. Anis-ur-Rehman, J. Alloys Compd. 509, 10139 (2011)CrossRefGoogle Scholar
  30. 30.
    V.R. Singh, A. Dixit, A. Garg, D.C. Agrawal, Appl. Phys. A 90, 197 (2008)CrossRefGoogle Scholar
  31. 31.
    K.Y. Yun, M. Noda, M. Okuyama, J. Korean Phys. Soc. 42, 1153 (2003)Google Scholar
  32. 32.
    S.M. Lee, A. Cho, Y.S. Cho, RSC Adv. 6, 16602 (2016)CrossRefGoogle Scholar
  33. 33.
    F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Minnesota, 1992)Google Scholar
  34. 34.
    C.M. Raghavan, W.K. Jin, S.K. Sang, J. Am. Ceram. Soc. 97, 235 (2014)CrossRefGoogle Scholar
  35. 35.
    P.S.V. Mocherla, C. Karthik, R. Ubic, M.S. Ramachandra Rao, C. Sudakar, Appl. Phys. Lett. 103, 022910 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Jiang, J.J. Zhu, J.D. Wu, J. Sun, Z.G. Hu, J.H. Chu, A.C.S. Appl, Mater. Interfaces 3, 4844 (2011)CrossRefGoogle Scholar
  37. 37.
    V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)CrossRefGoogle Scholar
  38. 38.
    X. Xue, G. Tan, W. Liu, H. Hao, H. Ren, J. Alloys Compd. 622, 477 (2015)CrossRefGoogle Scholar
  39. 39.
    X.Z. Chen, R.L. Yang, J.P. Zhou, X.M. Chen, Q. Jiang, P. Liu, Solid State Sci. 19, 117 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Nayak, S.Y. Lee, T.Y. Tseng, Mater. Chem. Phys. 77, 34 (2002)CrossRefGoogle Scholar
  41. 41.
    X. Xue, G. Tan, H. Hao, H. Ren, Appl. Surf. Sci. 282, 432 (2013)CrossRefGoogle Scholar
  42. 42.
    J. Li, N. Sha, Z. Zhao, Appl. Surf. Sci. 454, 233 (2018)CrossRefGoogle Scholar
  43. 43.
    W. Cai, C. Fu, R. Gao, W. Jiang, X. Deng, G. Chen, J. Alloys Compd. 617, 240 (2014)CrossRefGoogle Scholar
  44. 44.
    W. Cai, C. Fu, J. Gao, H. Chen, J. Alloys Compd. 408, 870 (2009)CrossRefGoogle Scholar
  45. 45.
    Y. Ren, X. Zhu, J. Zhu, J. Zhu, D. Xiao, Ceram. Int. 41, S234 (2015)CrossRefGoogle Scholar
  46. 46.
    K. Singh, S.K. Singh, D. Kaur, Ceram. Int. 42, 13432 (2016)CrossRefGoogle Scholar
  47. 47.
    Q. Zhang, R.R. Whatmore, J. Eur. Ceram. Soc. 24, 277 (2004)CrossRefGoogle Scholar
  48. 48.
    F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Adv. Mater. 19, 2889 (2007)CrossRefGoogle Scholar
  49. 49.
    D.C. Jia, J.H. Xu, H. Ke, W. Wang, Y. Zhou, J. Eur. Ceram. Soc. 29, 3099 (2009)CrossRefGoogle Scholar
  50. 50.
    J. Xu, G. Wang, H. Wang, D. Ding, Y. He, Mater. Lett. 63, 855 (2009)CrossRefGoogle Scholar
  51. 51.
    S. Ryu, J.Y. Kim, Y.H. Shin, B.G. Park, J.Y. Son, H.M. Jang, Chem. Mater. 21, 5050 (2009)CrossRefGoogle Scholar
  52. 52.
    S. Sharma, P. Saravanan, O.P. Pandey, P. Sharma, J. Mater. Sci. 27, 5909 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingChina
  2. 2.Chongqing Key Laboratory of Nano/Micro Composite Materials and DevicesChongqingChina

Personalised recommendations