Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15825–15847 | Cite as

Room temperature chemiresistive gas sensors: challenges and strategies—a mini review

  • Parthasarathy Srinivasan
  • Madeshwari Ezhilan
  • Arockia Jayalatha Kulandaisamy
  • K. Jayanth Babu
  • John Bosco Balaguru RayappanEmail author
Review
  • 104 Downloads

Abstract

One of the sources of environmental threat in recent years is the leakage of toxic gases from various industries. Sensors to detect these gases in trace level concentrations are highly required to ensure a safe living environment. In this context, many types of gas sensors such as calorimetric, conductometric, potentiometric, catalytic, and chemiresistive types have been employed to detect these gases. Among them, chemiresistive type sensors have been widely employed due to high selectivity, sensitivity, simplicity in fabrication, compactness, lower operating temperature, and low power consumption. Chemiresistive sensors are designed with inbuilt micro-heaters for improving the sensing response. However, sensors operated at elevated operating temperatures would significantly affect the stability of the sensor due to grain growth. To address this concern, many efforts have been progressing over the years towards the development of room temperature operated gas sensors. In this review, room temperature operated gas sensors developed for the detection of ammonia, acetaldehyde, ethanol, nitrogen dioxide, ozone, and aromatic VOCs have been discussed. In addition, the major challenges possessed by the sensors operated at elevated temperatures such as grain growth, change of conductivity, and variations in charge transport characteristics have been addressed. Also, the strategies to minimize the aforementioned challenges have been highlighted.

Notes

Acknowledgements

Authors wish to express their sincere thanks to the Department of Science & Technology, New Delhi, India for their financial support SR/FST/ET-II/2018/221 and ECR/2016/001805. Two authors, Parthasarathy Srinivasan, and Madeshwari Ezhilan, wish to expresses their sincere thanks to Council of Scientific and Industrial Research (HRDG-09/1095/0016/2016-EMR-I) and (09/1095(0044)/19-EMR-I), New Delhi, India for the financial support. They also acknowledge SASTRA Deemed University, Thanjavur for extending infrastructure support to carry out this work.

References

  1. 1.
    E. Comini, G. Faglia, G. Sberveglieri, Electrical-Based Gas Sensing (Springer, Boston, 2009)Google Scholar
  2. 2.
    Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Sensors (Basel). 12, 2610 (2012)Google Scholar
  3. 3.
    G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007)Google Scholar
  4. 4.
    S. Sharma, M. Madou, Philos. Trans. A. 370, 2448 (2012)Google Scholar
  5. 5.
    X.-J. Huang, Y.-K. Choi, Sensors Actuators B 122, 659 (2007)Google Scholar
  6. 6.
    K.D. Schierbaum, Sensors Actuators B 24, 239 (1995)Google Scholar
  7. 7.
    J. Huang, Q. Wan, Sensors 9, 9903 (2009)Google Scholar
  8. 8.
    A. Kolodziejczak-Radzimska, T. Jesionowski, Materials (Basel). 7, 2833 (2014)Google Scholar
  9. 9.
    J.X. Wang, X.W. Sun, Y. Yang, H. Huang, Y.C. Lee, O.K. Tan, L. Vayssieres, Nanotechnology 17, 4995 (2006)Google Scholar
  10. 10.
    F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xie, H. Li, RSC Adv. 6, 79343 (2016)Google Scholar
  11. 11.
    K.R. Nemade, S.A. Waghuley, Int. J. Mater. Sci. Eng. 2, 63 (2014)Google Scholar
  12. 12.
    R.M. Agrawal, S.D. Charpe, F.C. Raghuwanshi, G.T. Lamdhade, Int. J. Appl. Innov. Eng. Manag. 4, 141 (2015)Google Scholar
  13. 13.
    R. Vijayalakshmi, V. Rajendran, Sch. Res. Libr. 4, 1183 (2012)Google Scholar
  14. 14.
    T. Kalaivani, P. AnilKumar, J. Mater. Sci. 29, 9920 (2018)Google Scholar
  15. 15.
    X.-T. Yin, W.-D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F. Wu, D. Dastan, H. Garmestani, Z. Shi, Ş. Ţălu, J. Mater. Sci. 30, 14687 (2019)Google Scholar
  16. 16.
    A. Kanneganti, M. Talasila, J. Eng. Res. Appl. 4, 116 (2014)Google Scholar
  17. 17.
    A.K. Prasad, P.I. Gouma, J. Mater. Sci. 38, 4347 (2003)Google Scholar
  18. 18.
    A.N. Naje, A.S. Norry, A.M. Suhail, Int. J. Innov. Res. Sci. Eng. Technol. 2, 7068 (2013)Google Scholar
  19. 19.
    J. Livage, Materials (Basel). 3, 4175 (2010)Google Scholar
  20. 20.
    L. Liao, H.X. Mai, Q. Yuan, H.B. Lu, J.C. Li, C. Liu, C.H. Yan, Z.X. Shen, T. Yu, J. Phys. Chem. C 112, 9061 (2008)Google Scholar
  21. 21.
    T. Chen, Q.J. Liu, Z.L. Zhou, Y.D. Wang, Nanotechnology 19, 95506 (2008)Google Scholar
  22. 22.
    S.H. Lee, R. Deshpande, P.A. Parilla, K.M. Jones, B. To, A.H. Mahan, A.C. Dillon, Adv. Mater. 18, 763 (2006)Google Scholar
  23. 23.
    H. Najafi-Ashtiani, J. Mater. Sci. 30, 12224 (2019)Google Scholar
  24. 24.
    Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, Y. Li, Sens. Actuators B 129, 666 (2008)Google Scholar
  25. 25.
    J.-Y. Park, J.-K. Heo, Y.-C. Kang, Bull. Korean Chem. Soc. 31, 397 (2010)Google Scholar
  26. 26.
    C. Cantalini, M. Post, D. Buso, M. Guglielmi, A. Martucci, Sens. Actuators B 108, 184 (2005)Google Scholar
  27. 27.
    V.V. Mali, S.T. Navale, M.A. Chougule, G.D. Khuspe, P.R. Godse, S.A. Pawar, V.B. Patil, AIP Conf. Proc. 1591, 631 (2014)Google Scholar
  28. 28.
    A. Mirzaei, B. Hashemi, K. Janghorban, J. Mater. Sci. 27, 3109 (2016)Google Scholar
  29. 29.
    S. Vetter, S. Haffer, T. Wagner, M. Tiemann, Sens. Actuators B 206, 133 (2015)Google Scholar
  30. 30.
    I. Kelpšaite, J. Baltrušaitis, E. Valatka, Medziagotyra 17, 236 (2011)Google Scholar
  31. 31.
    G. Sakai, G. Sakai, K. Shimanoe, K. Shimanoe, Catal. Surv. Asia 7, 63 (2003)Google Scholar
  32. 32.
    N. Yamazoe, Y. Kurokawa, T. Seiyama, Sens. Actuators 4, 283 (1983)Google Scholar
  33. 33.
    V.E. Bochenkov, G.B. Sergeev, Adv. Colloid Interface Sci. 116, 245 (2005)Google Scholar
  34. 34.
    M.M. Arafat, B. Dinan, S.A. Akbar, A.S.M.A. Haseeb, Sensors 12, 7207 (2012)Google Scholar
  35. 35.
    R. Boppella, P. Manjula, S. Arunkumar, S.V. Manorama, Chem. Sens. 4, 1 (2014)Google Scholar
  36. 36.
    J. Wang, J.-W. Luo, L. Zhang, A. Zunger, Nano Lett. 15, 88 (2015)Google Scholar
  37. 37.
    K.S. Kim, Y.J. Park, Nanoscale Res. Lett. 7, 47 (2012)Google Scholar
  38. 38.
    X.C. Song, X. Wang, Y.F. Zheng, R. Ma, H.Y. Yin, J. Nanopart. Res. 13, 1319 (2011)Google Scholar
  39. 39.
    S.G. Victoria, A.M.E. Raj, C. Ravidhas, Mater. Chem. Phys. 162, 852 (2015)Google Scholar
  40. 40.
    W. Shi, N. Chopra, J. Nanopart. Res. 13, 851 (2011)Google Scholar
  41. 41.
    J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett. 2, 1287 (2002)Google Scholar
  42. 42.
    D. Sporn, P. Löbmann, U. Guntow, W. Glaubitt, in Chemical Physics of Thin Film Deposition Processes for Micro- and Nano-Technologies, ed. By Y. Pauleau. NAII, vol 55 (Springer, Dordrecht, 2002), pp. 69–89Google Scholar
  43. 43.
    M. Stan, A. Popa, D. Toloman, T.-D. Silipas, D.C. Vodnar, Acta Metall. Sin. English Lett. 29, 228 (2016)Google Scholar
  44. 44.
    A. Ali, Z. Wazir, M. Tufail, Z.H. Ibupoto, M. Atif, Indian J. Phys. 89, 331 (2015)Google Scholar
  45. 45.
    A. Sripathi, D. Krishna, C. Tai, M. Sridhar, Mater. Chem. Phys. 125, 347 (2011)Google Scholar
  46. 46.
    L.T. Hoa, J.S. Chung, S.H. Hur, Sens. Actuators B 223, 76 (2016)Google Scholar
  47. 47.
    H.-U. Lee, K. Ahn, S.-J. Lee, J.-P. Kim, H.-G. Kim, S.-Y. Jeong, C.-R. Cho, Appl. Phys. Lett. 98, 193114 (2011)Google Scholar
  48. 48.
    K. Vijayalakshmi, A. Renitta, K. Karthick, Ceram. Int. 40, 6171 (2014)Google Scholar
  49. 49.
    B.G. Jeyaprakash, K. Kesavan, R.A. Kumar, S. Mohan, A. Amalarani, Bull. Mater. Sci. 34, 601 (2011)Google Scholar
  50. 50.
    V. Balouria, A. Kumar, S. Samanta, S. Bhattacharya, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, AIP Conf. Proc. 289, 289 (2012)Google Scholar
  51. 51.
    F. Fang, J. Kennedy, J. Futter, T. Hopf, A. Markwitz, E. Manikandan, G. Henshaw, Nanotechnology 22, 335702 (2011)Google Scholar
  52. 52.
    F. Fang, J. Futter, A. Markwitz, J. Kennedy, Nanotechnology 20, 245502 (2009)Google Scholar
  53. 53.
    A.M. Amanulla, S.K.J. Shahina, R. Sundaram, C.M. Magdalane, K. Kaviyarasu, D. Letsholathebe, S.B. Mohamed, J. Kennedy, M. Maaza, J. Photochem. Photobiol. B 183, 233 (2018)Google Scholar
  54. 54.
    J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Appl. Surf. Sci. 367, 52 (2016)Google Scholar
  55. 55.
    K. Kaviyarasu, G.T. Mola, S.O. Oseni, K. Kanimozhi, C.M. Magdalane, J. Kennedy, M. Maaza, J. Mater. Sci. 30, 147 (2019)Google Scholar
  56. 56.
    K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B 160, 580 (2011)Google Scholar
  57. 57.
    X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, Sensors (Basel). 12, 9635 (2012)Google Scholar
  58. 58.
    Z. Pang, J. Yu, D. Li, Q. Nie, J. Zhang, Q. Wei, J. Mater. Sci. 29, 3576 (2018)Google Scholar
  59. 59.
    G.K. Mani, J.B.B. Rayappan, Sens. Actuators B 198, 125 (2014)Google Scholar
  60. 60.
    G.K. Mani, J.B.B. Rayappan, Mater. Sci. Eng. B 191, 41 (2015)Google Scholar
  61. 61.
    G.K. Mani, J.B.B. Rayappan, Sens. Actuators B 183, 459 (2013)Google Scholar
  62. 62.
    A. Bouaoud, A. Rmili, F. Ouachtari, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, Mater. Chem. Phys. 137(3), 843 (2013)Google Scholar
  63. 63.
    A.P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, F. Iacomi, Appl. Surf. Sci. 280, 598 (2013)Google Scholar
  64. 64.
    P. Srinivasan, J.B.B. Rayappan, Sens. Actuators B 277, 129 (2018)Google Scholar
  65. 65.
    N. Barsan, M. Schweizer-Berberich, W.G. Fresenius, J. Anal. Chem. 365, 287 (1999)Google Scholar
  66. 66.
    N. Barsan, U. Weimar, J. Electroceram. 7, 143 (2001)Google Scholar
  67. 67.
    W.M. Sears, Sens. Actuators B 67, 161 (2000)Google Scholar
  68. 68.
    P. Nelli, G. Faglia, G. Sberveglieri, E. Cereda, G. Gabetta, A. Dieguez, Thin Solid Films 371, 249 (2000)Google Scholar
  69. 69.
    A.C. Romain, J. Nicolas, Sens. Actuators B 146, 502 (2010)Google Scholar
  70. 70.
    G. Korotcenkov, B.K. Cho, Sens. Actuators B 156, 527 (2011)Google Scholar
  71. 71.
    E. Cordos, L. Ferenczi, S. Cadar, S. Costiug, G. Pitl, A. Aciu, A. Ghita, IEEE Int. Conf. Autom. Qual. Test. Robot. 2, 208 (2006)Google Scholar
  72. 72.
    X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, H. Ning, Sensors 12, 9635 (2012)Google Scholar
  73. 73.
    D. Sivalingam, B.G. Jeyaprakash, J.B.B. Rayappan, Cryst. Res. Technol. 46, 685 (2011)Google Scholar
  74. 74.
    D. Sivalingam, J.B. Gopalakrishnan, U.M. Krishnan, S. Madanagurusamy, J.B.B. Rayappan, Physica E 43, 1804 (2011)Google Scholar
  75. 75.
    D. Sivalingam, J.B. Gopalakrishnan, J.B.B. Rayappan, Mater. Lett. 77, 117 (2012)Google Scholar
  76. 76.
    I. Rawal, RSC Adv. 5, 4135 (2015)Google Scholar
  77. 77.
    S. Lenaerts, J. Roggen, G. Maes, Spectrochim. Acta Part A 51, 883 (1995)Google Scholar
  78. 78.
    M. Dominguez-Pumar, L. Kowalski, R. Calavia, E. Llobet, Sens. Actuators B 229, 1 (2016)Google Scholar
  79. 79.
    L. Kowalski, J. Pons-Nin, E. Navarrete, E. Llobet, M. Domínguez-Pumar, Sensors 18, 654 (2018)Google Scholar
  80. 80.
    H. Li, W. Xie, B. Liu, C. Wang, Y. Wang, X. Duan, Q. Li, T. Wang, Sens. Actuators B 242, 404 (2017)Google Scholar
  81. 81.
    M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Sens. Actuators B 115, 128 (2006)Google Scholar
  82. 82.
    Z. Wen, L. Tian-mo, Physica B 405, 1345 (2010)Google Scholar
  83. 83.
    J. Wang, P. Yang, X. Wei, A.C.S. Appl, Mater. Interfaces 7, 3816 (2015)Google Scholar
  84. 84.
    H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Z. Ying, Sens. Actuators B 129, 319 (2008)Google Scholar
  85. 85.
    A. Nancy Anna Anasthasiya, K. Roopa Kishore, P.K. Rai, B.G. Jeyaprakash, Sens. Actuators B. 255, 1064 (2018)Google Scholar
  86. 86.
    A. Nancy Anna Anasthasiya, K. Roopa Kishore, P.K. Rai, B.G. Jeyaprakash, Appl. Surf. Sci. 449, 244 (2018)Google Scholar
  87. 87.
    L. Schmidt-mende, J.L. Macmanus-driscoll, Mater. Today 10, 40 (2007)Google Scholar
  88. 88.
    C. Wang, X. Chu, M. Wu, Sens. Actuators B 113, 320 (2006)Google Scholar
  89. 89.
    M. Gardon, J.M. Guilemany, J. Mater. Sci. 24, 1410 (2013)Google Scholar
  90. 90.
    Y. Wang, B. Liu, S. Xiao, H. Li, L. Wang, D. Cai, D. Wang, Y. Liu, Q. Li, T. Wang, J. Mater. Chem. A 3, 1317 (2015)Google Scholar
  91. 91.
    N. Yamazoe, Sens. Actuators B 5, 7 (1991)Google Scholar
  92. 92.
    P. Shankar, J. Bosco, B. Rayappan, Sci. Jet 4, 126 (2015)Google Scholar
  93. 93.
    G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10, 5469 (2010)Google Scholar
  94. 94.
    X. Wang, S.S. Yee, W.P. Carey, Sens. Actuators B 25, 454 (1995)Google Scholar
  95. 95.
    G.K. Mani, J. Bosco, B. Rayappan, RSC Adv. 5, 54952 (2015)Google Scholar
  96. 96.
    S. Park, S. Kim, H. Kheel, C. Lee, Sens. Actuators B 222, 1193 (2015)Google Scholar
  97. 97.
    L.N. Balakrishnan, S. Gowrishankar, N. Gopalakrishnan, IEEE Sens. J. 13, 2055 (2013)Google Scholar
  98. 98.
    V. Kobrinsky, E. Fradkin, V. Lumelsky, A. Rothschild, Y. Komem, Y. Lifshitz, Sens. Actuators B 148, 379 (2010)Google Scholar
  99. 99.
    J. Liang, W. Li, J. Liu, M. Hu, J. Alloys Compd. 687, 845 (2016)Google Scholar
  100. 100.
    U. Yaqoob, D.-T. Phan, A.S.M.I. Uddin, G.-S. Chung, Sens. Actuators B 221, 760 (2015)Google Scholar
  101. 101.
    L. Guan, S. Wang, W. Gu, J. Zhuang, H. Jin, W. Zhang, T. Zhang, J. Wang, Sens. Actuators B 196, 321 (2014)Google Scholar
  102. 102.
    W. Zhang, M. Hu, X. Liu, Y. Wei, N. Li, Y. Qin, J. Alloys Compd. 679, 391 (2016)Google Scholar
  103. 103.
    P. Wan, W. Yang, X. Wang, J. Hu, H. Zhang, Sens. Actuators B 214, 36 (2015)Google Scholar
  104. 104.
    H. Wu, L. Wang, J. Zhou, J. Gao, G. Zhang, S. Xu, Y. Xie, L. Li, K. Shi, J. Colloid Interface Sci. 466, 72 (2016)Google Scholar
  105. 105.
    S. Liu, Z. Wang, Y. Zhang, C. Zhang, T. Zhang, Sens. Actuators B 211, 318 (2015)Google Scholar
  106. 106.
    Z. Wang, Y. Zhang, S. Liu, T. Zhang, Sens. Actuators B 222, 893 (2016)Google Scholar
  107. 107.
    T. Siciliano, A. Genga, G. Micocci, M. Siciliano, M. Tepore, A. Tepore, Sens. Actuators B 201, 138 (2014)Google Scholar
  108. 108.
    A.T. Mane, S.T. Navale, V.B. Patil, Org. Electron. 19, 15 (2015)Google Scholar
  109. 109.
    R. Leghrib, A. Felten, J.J. Pireaux, E. Llobet, Thin Solid Films 520, 966 (2011)Google Scholar
  110. 110.
    X. Jie, D. Zeng, J. Zhang, K. Xu, J. Wu, B. Zhu, C. Xie, Sens. Actuators B 220, 201 (2015)Google Scholar
  111. 111.
    L.F. Da Silva, J.-C. M’peko, A.C. Catto, S. Bernardini, V.R. Mastelaro, K. Aguir, C. Ribeiro, E. Longo, Sens. Actuators B 240, 573 (2017)Google Scholar
  112. 112.
    Z. Zhu, J.L. Chang, R.J. Wu, Sens. Actuators B 214, 56 (2015)Google Scholar
  113. 113.
    M. Belaqziz, M. Amjoud, A. Gaddari, B. Rhouta, D. Mezzane, Superlattices Microstruct. 71, 185 (2014)Google Scholar
  114. 114.
    I. Kortidis, K. Moschovis, F.A. Mahmoud, G. Kiriakidis, Thin Solid Films 518, 1208 (2009)Google Scholar
  115. 115.
    D. Klaus, D. Klawinski, S. Amrehn, M. Tiemann, T. Wagner, Sens. Actuators B 217, 181 (2015)Google Scholar
  116. 116.
    R.J. Wu, C.Y. Chen, M.H. Chen, Y.L. Sun, Sens. Actuators B 123, 1077 (2007)Google Scholar
  117. 117.
    L. Kumar, I. Rawal, A. Kaur, S. Annapoorni, Sens. Actuators B 240, 408 (2017)Google Scholar
  118. 118.
    X. Li, X. Li, Z. Li, J. Wang, J. Zhang, Sens. Actuators B 240, 273 (2017)Google Scholar
  119. 119.
    U.V. Patil, N.S. Ramgir, N. Karmakar, A. Bhogale, A.K. Debnath, D.K. Aswal, S.K. Gupta, D.C. Kothari, Appl. Surf. Sci. 339, 69 (2015)Google Scholar
  120. 120.
    X. Li, Y. Zhao, X. Wang, J. Wang, A.M. Gaskov, S.A. Akbar, Sens. Actuators B 230, 330 (2016)Google Scholar
  121. 121.
    Q. Feng, X. Li, J. Wang, A.M. Gaskov, Sens. Actuators B 222, 864 (2016)Google Scholar
  122. 122.
    S. Shalini, D. Balamurugan, J. Colloid Interface Sci. 466, 352 (2016)Google Scholar
  123. 123.
    Y. Vijayakumar, G.K. Mani, M.V.R. Reddy, J.B.B. Rayappan, Ceram. Int. 41, 2221 (2015)Google Scholar
  124. 124.
    G.K. Mani, J.B.B. Rayappan, Sens. Actuators B 223, 343 (2016)Google Scholar
  125. 125.
    L. Yanxiao, Z. Xiao-bo, H. Xiao-wei, S. Ji-yong, Z. Jie-wen, M. Holmes, L. Hao, Biosens. Bioelectron. 67, 35 (2015)Google Scholar
  126. 126.
    M. Mabrook, P. Hawkins, Sens. Actuators B 75, 197 (2001)Google Scholar
  127. 127.
    Z. Zhu, C.T. Kao, R.J. Wu, Appl. Surf. Sci. 320, 348 (2014)Google Scholar
  128. 128.
    R.J. Wu, D.J. Lin, M.R. Yu, M.H. Chen, H.F. Lai, Sens. Actuators B 178, 185 (2013)Google Scholar
  129. 129.
    X.J. Li, S.J. Chen, C.Y. Feng, Sens. Actuators B 123, 461 (2007)Google Scholar
  130. 130.
    A. Arena, N. Donato, G. Saitta, A. Bonavita, G. Rizzo, G. Neri, Sens. Actuators B 145, 488 (2010)Google Scholar
  131. 131.
    S.A. Hakim, Y. Liu, Y. Lu, W. Chen, Mater. Sci. Semicond. Process. 31, 630 (2015)Google Scholar
  132. 132.
    D. Zhu, Y. Fu, W. Zang, Y. Zhao, L. Xing, X. Xue, Mater. Lett. 166, 288 (2016)Google Scholar
  133. 133.
    S. Manivannan, A.M. Saranya, B. Renganathan, D. Sastikumar, G. Gobi, K.C. Park, Sens. Actuators B 171–172, 634 (2012)Google Scholar
  134. 134.
    M. Seetha, P. Meena, D. Mangalaraj, Y. Masuda, K. Senthil, Mater. Chem. Phys. 133, 47 (2012)Google Scholar
  135. 135.
    M. Li, L.J. Qiao, W.Y. Chu, A.A. Volinsky, Sens. Actuators B 158, 340 (2011)Google Scholar
  136. 136.
    D. Sebok, I. Dékány, Sens. Actuators B 206, 435 (2015)Google Scholar
  137. 137.
    Agency for toxic substances and disease (ASTDR) Registry, Public Heal. Statement Ammon. CAS# 7664-, 1 (n.d.)Google Scholar
  138. 138.
    J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, Nat. Geosci. 1, 636 (2008)Google Scholar
  139. 139.
    C. Malins, A. Doyle, B.D. MacCraith, F. Kvasnik, M. Landl, P. Simon, L. Kalvoda, R. Lukas, K. Pufler, I. Babusík, J. Environ. Monit. 1, 417 (1999)Google Scholar
  140. 140.
    Y. Alarie, Environ. Health Perspect. 42, 9 (1981)Google Scholar
  141. 141.
    B. Timmer, W. Olthuis, A. Van Den Berg, Sens. Actuators B 107, 666 (2005)Google Scholar
  142. 142.
    S.G. Sazhin, E.I. Soborover, S.V. Tokarev, Russ. J. Nondestruct. Test. 39, 791 (2003)Google Scholar
  143. 143.
    G.K. Mani, J.B.B. Rayappan, Appl. Surf. Sci. 311, 405–412 (2014)Google Scholar
  144. 144.
    G.K. Mani, J.B.B. Rayappan, J. Alloys Compd. 582, 414 (2014)Google Scholar
  145. 145.
    Z. Imran, K. Rasool, S.S. Batool, M. Ahmad, M.A. Rafiq, AIP Adv. 5, 117214 (2015)Google Scholar
  146. 146.
    P. Shankar, J.B.B. Rayappan, RSC Adv. 5, 85363 (2015)Google Scholar
  147. 147.
    F. Akira, O. Tatsuki, Electron. Commun. Jpn. 96, 11 (2013)Google Scholar
  148. 148.
    W. Liu, Y. Liu, J. Do, J. Li, Appl. Surf. Sci. 390, 929 (2016)Google Scholar
  149. 149.
    M.C. da Cunha Veloso, V.M. da Silva, G.V. Santos, J.B. de Andrade, J. Chromatogr. Sci. 39, 173 (2001)Google Scholar
  150. 150.
    D. Calestani, R. Mosca, M. Zanichelli, M. Villani, A. Zappettini, J. Mater. Chem. 21, 15532 (2011)Google Scholar
  151. 151.
    A. Giberti, M.C. Carotta, B. Fabbri, S. Gherardi, V. Guidi, C. Malagù, Sens. Actuators B 174, 402 (2012)Google Scholar
  152. 152.
    P. Rai, Y.-T. Yu, Sens. Actuators B 173, 58 (2012)Google Scholar
  153. 153.
    J. Xu, J. Han, Y. Zhang, Y. Sun, B. Xie, Sens. Actuators B 132, 334 (2008)Google Scholar
  154. 154.
    E. Gunasekaran, M. Ezhilan, G.K. Mani, P. Shankar, A.J. Kulandaisamy, J.B.B. Rayappan, K.J. Babu, Semicond. Sci. Technol. 33, 95005 (2018)Google Scholar
  155. 155.
    A. Hamad, L. Li, Z. Liu, X. Li, Z. Tao, Appl. Phys. A. 119, 1387 (2015)Google Scholar
  156. 156.
    S. Parthasarathy, V. Nandhini, D. Prakalya, B.G. Jeyaprakash, Int. J. ChemTech. Res. 7, 884 (2015)Google Scholar
  157. 157.
    L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, H. Li, Z. Zhu, Sens. Actuators B 161, 209 (2012)Google Scholar
  158. 158.
    D. Sivalingam, J.B.B. Rayappan, S. Gandhi, S. Madanagurusamy, R.K. Sekar, U. Krishnan, Int. J. Nanosci. 10, 1161 (2011)Google Scholar
  159. 159.
    D. Chen, X. Hou, H. Wen, Y. Wang, H. Wang, X. Li, R. Zhang, H. Lu, H. Xu, S. Guan, J. Sun, L. Gao, Nanotechnology 21, 035501 (2010)Google Scholar
  160. 160.
    F. Hellegouarch, F. Arefi-Khonsari, R. Planade, J. Amouroux, Sens. Actuators B 73, 27 (2001)Google Scholar
  161. 161.
    R.S. Khadayate, R.B. Waghulde, M.G. Wankhede, J.V. Sali, P.P. Patil, Bull. Mater. Sci. 30, 129 (2007)Google Scholar
  162. 162.
    C. Stella, N. Soundararajan, K. Ramachandran, J. Mater. Sci. 26, 4178 (2015)Google Scholar
  163. 163.
    K. Vijayalakshmi, S.D. Jereil, Ceram. Int. 41, 3220 (2015)Google Scholar
  164. 164.
    P. Shankar, J.B.B. Rayappan, A.C.S. Appl, Mater. Interfaces 9, 38135 (2017)Google Scholar
  165. 165.
    M. Fleischer, H. Meixner, Sens. Actuators B 52, 179 (1998)Google Scholar
  166. 166.
    Z. Zhu, J.L. Chang, R.J. Wu, Sens. Actuators B Chem. 214, 56 (2015)Google Scholar
  167. 167.
    K. Kanda, T. Maekawa, Sens. Actuators B 108, 97 (2005)Google Scholar
  168. 168.
    M. Mabrook, P. Hawkins, Sensors 2, 374 (2002)Google Scholar
  169. 169.
    S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, V.B. Patil, IEEE Sens. J. 11, 3417 (2011)Google Scholar
  170. 170.
    R. Leghrib, A. Felten, F. Demoisson, F. Reniers, J.J. Pireaux, E. Llobet, Carbon N. Y. 48, 3477 (2010)Google Scholar
  171. 171.
    L. Peng, J. Zhai, D. Wang, Y. Zhang, P. Wang, Q. Zhao, T. Xie, Sens. Actuators B 148, 66 (2010)Google Scholar
  172. 172.
    P. Srinivasan, B.G. Jeyaprakash, J. Alloys Compd. 768, 1016 (2018)Google Scholar
  173. 173.
    J. Zhai, D. Wang, L. Peng, Y. Lin, X. Li, T. Xie, Sens. Actuators B 147, 234 (2010)Google Scholar
  174. 174.
    P. Wang, Y. Fu, B. Yu, Y. Zhao, L. Xing, X. Xue, J. Mater. Chem. A 3, 3529 (2015)Google Scholar
  175. 175.
    J.D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, S. Barth, A. Cirera, A. Romano-Rodriguez, S. Mathur, J.R. Morante, Sens. Actuators B 140, 337 (2009)Google Scholar
  176. 176.
    G. Lu, J. Xu, J. Sun, Y. Yu, Y. Zhang, F. Liu, Sens. Actuators B 162, 82 (2012)Google Scholar
  177. 177.
    X. Li, N. Chen, S. Lin, J. Wang, J. Zhang, Sens. Actuators B 209, 729 (2015)Google Scholar
  178. 178.
    L. Meng, Q. Xu, Z. Sun, G. Li, S. Bai, Z. Wang, Y. Qin, Mater. Lett. 212, 296 (2018)Google Scholar
  179. 179.
    S. Parthasarathy, V. Nandhini, B.G. Jeyaprakash, J. Colloid Interface Sci. 482, 81 (2016)Google Scholar
  180. 180.
    F.M. Takata, G. Pattanaik, W. a. Soffa, P. T. a Sumodjo, and G. Zangari, in Electrochemistry Communications, ed. by T. Seiyama (Elsevier, Amsterdam, 2008), pp. 568–571Google Scholar
  181. 181.
    O. Wurzinger, G. Reinhardt, Sens. Actuators B 103, 104 (2004)Google Scholar
  182. 182.
    N.D. Hoa, S.Y. An, N.Q. Dung, N. Van Quy, D. Kim, Sens. Actuators B 146, 239 (2010)Google Scholar
  183. 183.
    Z. Bai, C. Xie, M. Hu, S. Zhang, D. Zeng, Mater. Sci. Eng. B 149, 12 (2008)Google Scholar
  184. 184.
    D.H. Kim, J.Y. Yoon, H.C. Park, K.H. Kim, Sens. Actuators B 62, 61 (2000)Google Scholar
  185. 185.
    K.L.A. Kumar, S. Durgajanani, B.G. Jeyaprakash, J.B.B. Rayappan, Sens. Actuators B 177, 19 (2013)Google Scholar
  186. 186.
    M.J.S. Spencer, Prog. Mater Sci. 57, 437 (2012)Google Scholar
  187. 187.
    S. Majumdar, Ceram. Int. 41, 14350 (2015)Google Scholar
  188. 188.
    G.R. Li, T. Hu, G.L. Pan, T.Y. Yan, X.P. Gao, H.Y. Zhu, J. Phys. Chem. C 112, 11859 (2008)Google Scholar
  189. 189.
    C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuators B 3, 147 (1991)Google Scholar
  190. 190.
    G. Korotcenkov, Mater. Sci. Eng. R 61, 1 (2008)Google Scholar
  191. 191.
    M. Kumar, V. Bhatt, A.C. Abhyankar, J. Kim, A. Kumar, S.H. Patil, J.-H. Yun, Sci. Rep. 8, 8079 (2018)Google Scholar
  192. 192.
    A. Gurlo, M. Ivanovskaya, Sens. Actuators B 44, 327 (1997)Google Scholar
  193. 193.
    S. Kannan, L. Rieth, F. Solzbacher, Sens. Actuators B 149, 8 (2010)Google Scholar
  194. 194.
    X.D. Gao, X.M. Li, W.D. Yu, Appl. Surf. Sci. 229, 275 (2004)Google Scholar
  195. 195.
    P.V.R. Ramesh, B.K. Ramamurthi, J.V.E. Elangovan, 26, 4152 (2015)Google Scholar
  196. 196.
    F.D. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, W.L. Estrada, Thin Solid Films 373, 137 (2000)Google Scholar
  197. 197.
    P. Tyagi, A. Sharma, M. Tomar, V. Gupta, Chem. Sens. 4, 18 (2014)Google Scholar
  198. 198.
    A. Sharma, M. Tomar, V. Gupta, J. Nanosci. Lett. 2, 27 (2014)Google Scholar
  199. 199.
    Z. Zhou, K. Kato, T. Komaki, M. Yoshino, H. Yukawa, M. Morinaga, K. Morita, J. Eur. Ceram. Soc. 24, 139 (2004)Google Scholar
  200. 200.
    A.N.G. Krishnan, G.K. Mani, P. Shankar, B. Vutukuri, J.B.B. Rayappan, A. Nambi, G. Krishnan, G.K. Mani, P. Shankar, Sci. Lett. 4, 79 (2015)Google Scholar
  201. 201.
    P. Nunes, E. Fortunato, P. Vilarinho, R. Martins, Int. J. Inorg. Mater. 3, 1211 (2001)Google Scholar
  202. 202.
    X. Wang, M. Zhao, F. Liu, J. Jia, X. Li, L. Cao, Ceram. Int. 39, 2883 (2013)Google Scholar
  203. 203.
    T.-R. Ling, C.-M. Tsai, Sens. Actuators B 119, 497 (2006)Google Scholar
  204. 204.
    P.S. Patil, Mater. Chem. Phys. 59, 185 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Parthasarathy Srinivasan
    • 1
  • Madeshwari Ezhilan
    • 1
  • Arockia Jayalatha Kulandaisamy
    • 1
  • K. Jayanth Babu
    • 1
  • John Bosco Balaguru Rayappan
    • 1
    Email author
  1. 1.Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) & School of Electrical & Electronics EngineeringSASTRA Deemed UniversityThanjavurIndia

Personalised recommendations