Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16494–16501 | Cite as

Enhanced ferroelectric properties and crystal structure of TGS0.74P0.26 single crystals

  • Sampathkumar Pongiappan
  • Srinivasan KaruppannanEmail author


The single crystals of triglycine sulpho phosphate (TGS0.74P0.26) were grown by slow evaporation method with 0.6 M of phosphoric acid in the growth solution. The crystal structure of the grown crystal is refined with 0.74 sulphur and 0.26 phosphorous occupancy with the formula of TGS0.74P0.26 using single crystal x-ray diffraction analysis. The dielectric, ferroelectric and pyroelectric properties of the TGS0.74P0.26 single crystals were investigated. The coercive field (Ec) and internal bias field (Ib) values are 8 kV/cm and 1.4 kV/cm, respectively and these values are found increased compared to the pure TGS and also low dielectric loss was observed. The pyroelectric coefficient of TGS0.74P0.26 crystal is 0.023 µC/cm2/°C and the pyroelectric figure of merit for current, voltage and detectivity are Fi = 105 pm/V, Fv = 0.055 m2/C and Fd = 22 µPa−1/2 respectively. Enhanced ferroelectric properties were observed when compared to the pure TGS crystals. The figure of merit for the detectivity (Fd) shows higher values when compared with that of the well-known materials such as PZT (11.5 µPa−1/2) and other lead free materials such as SBN (7.21 µPa−1/2) and CSBN (12 µPa−1/2). With these excellent properties, the TGS0.74P0.26 single crystal can be a promising material for the pyroelectric detector applications.



Authors would like to acknowledge the Defence Research and Development Organization (DRDO), New Delhi, Government of India for providing the financial support to carry out the research through DRDO-BU  CLS, Phase-II Programme.


This study was funded by Defence Research and Development Organization (DRDO), New Delhi, Government of India through DRDO-BU  CLS, Phase-II Programme (Grant No. DLS/86/50071/DRDO-BU Centre/Phase-II dated 20th February 2014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    R.B. Lal, A.K. Batra, Ferroelectrics 142, 51 (1993)CrossRefGoogle Scholar
  2. 2.
    C.M. Jahanzeb, D.P. Travers, Z. Butler, J.E. Celik-Butler, Gray. Appl. Phys. Lett. 70, 3495 (1997)CrossRefGoogle Scholar
  3. 3.
    R.W. Whatmore, Rep. Prog. Phys. 49, 1335 (1986)CrossRefGoogle Scholar
  4. 4.
    L. Liu, X. Li, X. Wu, Y. Wang, W. Di, D. Lin, X. Zhao, H. Luo, N. Neumann, Appl. Phys. Lett. 95, 192903 (2009)CrossRefGoogle Scholar
  5. 5.
    L. Fan, J. Chen, S. Li, H. Kang, L. Liu, L. Fang, X. Xing, Appl. Phys. Lett. 102, 022905 (2013)CrossRefGoogle Scholar
  6. 6.
    M.M. Vopson, G. Caruntu, X. Tan 128, 61 (2017)Google Scholar
  7. 7.
    B. Sun, P. Han, W. Zhao, Y. Liu, P. Chen, J. Phys. Chem. C 118, 18814 (2014)CrossRefGoogle Scholar
  8. 8.
    B. Sun, M. Tang, J. Gao, C.M. Li, ChemElectroChem 3, 8 (2016)Google Scholar
  9. 9.
    A. Sinha, S. Bhandari, H. Yadav, G. Ray, S. Godara, N. Tyagi, J. Dalal, S. Kumar, B. Kumar, Cryst. Eng. Comm. 17, 5757 (2015)CrossRefGoogle Scholar
  10. 10.
    R.R. Choudhury, R. Chitra, M. Ramanadham, R. Jayavel, Appl. Phys. A 74, S1667 (2002)CrossRefGoogle Scholar
  11. 11.
    P. Guggilla, A.K. Batra, J.R. Curie, M.D. Aggarwal, M.A. Alim, R.B. Lal, Mater. Lett. 60, 1937 (2006)CrossRefGoogle Scholar
  12. 12.
    J. Novotny, L. Prokopova, Z. Micka, J. Cryst. Growth 226, 333 (2001)CrossRefGoogle Scholar
  13. 13.
    M.A. Gaffar, A. Abu El-Fad, J. Phys. 1, 8991 (1989)Google Scholar
  14. 14.
    R. Muralidharan, R. Mohankumar, R. Dhanasekaran, A.K. Tirupathi, R. Jayavel, P. Ramasamy, Mater. Lett. 57, 3291 (2003)CrossRefGoogle Scholar
  15. 15.
    M.A. Gaffar, A. Abu El-Fadl, S.A. Mansour, J. Phys. D 22, 327 (1989)CrossRefGoogle Scholar
  16. 16.
    R. Muralidharan, R. Mohankumar, P.M. Ushasree, R. Jayavel, P. Ramasamy, J. Cryst. Growth 234, 545 (2002)CrossRefGoogle Scholar
  17. 17.
    W. Whatmore, Ferroelectrics 118, 241 (1991)CrossRefGoogle Scholar
  18. 18.
    A. Saxena, M. Fahim, V. Gupta, K. Sreenivas, J. Phys. D 36, 3168 (2003)CrossRefGoogle Scholar
  19. 19.
    J. Zhang, X.L. Dong, F. Cao, S.B. Guo, G.S. Wang, Appl. Phys. Lett. 102, 102908 (2013)CrossRefGoogle Scholar
  20. 20.
    S.T. Lau, C.H. Cheng, S.H. Choy, D.M. Lin, K.W. Kwok, H.L.W. Chan, J. Appl. Phys. 103, 104105 (2008)CrossRefGoogle Scholar
  21. 21.
    Y. Zhao, X. Hao, Q. Zhang, ACS Appl. Mater. Interfaces. 6, 11633 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Crystal Growth Laboratory, Physics DivisionDRDO-BU Center for Life Sciences, Bharathiar University CampusCoimbatoreIndia
  2. 2.Crystal Growth Laboratory, Department of Physics, School of Physical SciencesBharathiar UniversityCoimbatoreIndia

Personalised recommendations