Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16478–16493 | Cite as

Bifunctional Au–TiO2 thin films with enhanced photocatalytic activity and SERS based multiplexed detection of organic pollutant

  • Jaspal SinghEmail author
  • Ashis K. Manna
  • R. K. Soni


In the current study, Au–TiO2 thin films were prepared on glass substrates through the combined approach of spin-coating thermal evaporation method. The decoration of Au nanoparticles on to TiO2 surface has been achieved by the thermal annealing process under Ar atmosphere. Au–TiO2 thin films with improved optical absorption and effective bandgap narrowing exhibits outstanding photodegradation activity and ultra-sensitivity towards surface-enhanced Raman spectroscopy (SERS) based detection of the organic molecules. The existence of Au nanoparticles on TiO2 nanostructures efficiently controls the rate of recombination consequently Au–TiO2 thin films show significantly improved sun-light induced photodegradation efficiency for methylene blue (MB) dye. Au–TiO2 thin films decomposed 5 µM MB dye solution in 40 min under sun light exposure (850 W/cm2). Au–TiO2 thin films also exhibit efficient detection capabilities for the two organic molecules rhodamine 6G (R6G) and methylene blue (MB) with the Raman intensity enhancement factors of the order of ~ 107. The observed excellent SERS sensitivity of Au–TiO2 thin films towards the pollutant molecules are ascribed to the contribution of charge transfer mechanism among TiO2 and dye molecules. Furthermore, the fabricated Au–TiO2 thin films were also evaluated for the multiplexed detection by simultaneously detecting the two analytes (MB and R6G) from their mixture with superior sensitivity. Au–TiO2 nanohybrids thin films with these tremendous applications can be further employed for different applications like solar cell, gas sensing, energy production, and water splitting.



The authors would like to acknowledge the UFO, Indian Institute of Technology Delhi for providing the Raman spectroscopy facility. JS gratefully acknowledge the financial support from Indian Institute of Technology Delhi.

Supplementary material

10854_2019_2023_MOESM1_ESM.docx (1.1 mb)
Supplementary material 1 (DOCX 1134 kb)


  1. 1.
    M.G. Méndez-Medrano, E. Kowalska, A. Lehoux, A. Herissan, B. Ohtani, S. Rau, C. Colbeau-Justin, J.L. Rodriguez-Lopez, H. Remita, Surface modification of TiO2 with Au nanoclusters for efficient water treatment and hydrogen generation under visible light. J. Phys. Chem. C 120, 25010–25022 (2016)CrossRefGoogle Scholar
  2. 2.
    R. Reichert, Z. Jusys, R.J. Behm, Au/TiO2 photo (electro) catalysis: the role of the Au cocatalyst in photoelectrochemical water splitting and photocatalytic H2 evolution. J. Phys. Chem. C 119, 24750–24759 (2015)CrossRefGoogle Scholar
  3. 3.
    S. Joshi, L.A. Jones, E.L. Mayes, S.J. Ippolito, M.V. Sunkara, Modulating interleaved ZnO assembly with CuO nanoleaves for multifunctional performance: perdurable CO2 gas sensor and visible light catalyst. Inorg. Chem. Front. 4, 1848–1861 (2017)CrossRefGoogle Scholar
  4. 4.
    K. Xu, J. Wu, C.F. Tan, G.W. Ho, A. Wei, M. Hong, Ag-CuO-ZnO metal-semiconductor multiconcentric nanotubes for achieving superior and perdurable photodegradation. Nanoscale 9, 11574–11583 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Yang, Y. Li, T. Xu, Y. Li, H. Fu, K. Cheng, K. Ye, L. Yang, D. Cao, G. Wang, FeOOH electrodeposited on Ag decorated ZnO nanorods for electrochemical energy storage. RSC Adv. 6, 39166–39171 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem. Rev. 107, 2891–2959 (2007)CrossRefGoogle Scholar
  7. 7.
    L. Sang, Y. Zhao, C. Burda, TiO2 nanoparticles as functional building blocks. Chem. Rev. 14, 9283–9318 (2014)CrossRefGoogle Scholar
  8. 8.
    A. Tyagi, A. Yamamoto, T. Kato, H. Yoshida, Bifunctional property of Pt nanoparticles deposited on TiO2 for the photocatalytic sp3C-sp3C cross-coupling reactions between THF and alkanes. Catal. Sci. Technol. 7, 2616–2623 (2017)CrossRefGoogle Scholar
  9. 9.
    Z. Zhang, Z. Wang, S.W. Cao, C. Xue, Au/Pt nanoparticle-decorated TiO2 nanofibers with plasmon-enhanced photocatalytic activities for solar-to-fuel conversion. J. Phys. Chem. C 117, 25939–25947 (2013)CrossRefGoogle Scholar
  10. 10.
    K.S. Yang, Y.R. Lu, Y.Y. Hsu, C.J. Lin, C.M. Tseng, S.Y.H. Liou, K. Kumar, D.H. Wei, C.L. Dong, C.L. Chen, Plasmon-induced visible-light photocatalytic activity of Au nanoparticle-decorated hollow mesoporous TiO2: a view by X-ray spectroscopy. J. Phys. Chem. C 122, 6955–6962 (2018)CrossRefGoogle Scholar
  11. 11.
    L. Hlekelele, P.J. Franklyn, F. Dziike, S.H. Durbach, Novel synthesis of Ag decorated TiO2 anchored on zeolites derived from coal fly ash for the photodegradation of bisphenol-A. New J. Chem. 42, 1902–1912 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Li, H. Hu, Y. Bi, Ultra-thin TiO2 nanosheets decorated with Pd quantum dots for high-efficiency hydrogen production from aldehyde solution. J. Mater. Chem. A 4, 796–800 (2016)CrossRefGoogle Scholar
  13. 13.
    V. Sharma, S. Kumar, V. Krishnan, Clustered Au on TiO2 snowman-like nanoassemblies for photocatalytic applications. Chem. Select 1, 2963–2970 (2016)Google Scholar
  14. 14.
    T. Ali, P. Tripathi, A. Azam, W. Raza, A.S. Ahmed, A. Ahmed, M. Muneer, Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light irradiation. Mater. Res. Express 4, 015022 (2017)CrossRefGoogle Scholar
  15. 15.
    I. Singh, B. Birajdar, Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nano-powder prepared via a solvent-controlled non-aqueous sol-gel route. RSC Adv. 7, 54053–54062 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Cao, W. Yang, W. Zhang, G. Liu, P. Yue, Improved photocatalytic activity of Sn4+ doped TiO2 nanoparticulate films prepared by plasma-enhanced chemical vapor deposition. New J. Chem. 28, 218–222 (2004)CrossRefGoogle Scholar
  17. 17.
    X. Zhu, S. Han, W. Feng, Q. Kong, Z. Dong, C. Wang, J. Lei, Q. Yi, The effect of heat treatment on the anatase-rutile phase transformation and photocatalytic activity of Sn-doped TiO2 nanomaterials. RSC Adv. 8, 14249–14257 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. Wang, T. Hu, H. He, Y. Fu, X. Zhang, J. Sun, L. Xing, B. Liu, Y. Zhang, X. Xue, Enhanced H2 production of TiO2/ZnO nanowires Co-using solar and mechanical energy through piezo-photocatalytic effect. ACS Sustain. Chem. Eng. 6, 10162–10172 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Gannoruwa, B. Ariyasinghe, J. Bandara, The mechanism and material aspects of a novel Ag2O/TiO2 photocatalyst active in infrared radiation for water splitting. Catal. Sci. Technol. 6, 479–487 (2016)CrossRefGoogle Scholar
  20. 20.
    L. Zhao, T. Cui, Y. Li, B. Wang, J. Han, L. Han, Z. Liu, Efficient visible light photocatalytic activity of p-n junction CuO/TiO2 loaded on natural zeolite. RSC Adv. 5, 64495–64502 (2015)CrossRefGoogle Scholar
  21. 21.
    L. Guo, Z. Yang, K. Marcus, Z. Li, B. Luo, L. Zhou, X. Wang, Y. Du, Y. Yang, MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ. Sci. 11, 106–114 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Kandasamy, A. Trinchi, M.K. Ghantasala, G.F. Peaslee, A. Holland, W. Wlodarski, E. Comini, Characterization and testing of Pt/TiO2/SiC thin film layered structure for gas sensing. Thin Solid Films 542, 404–408 (2013)CrossRefGoogle Scholar
  23. 23.
    S.P. Lim, A. Pandikumar, N.M. Huang, H.N. Lim, Facile synthesis of Au@TiO2 nanocomposite and its application as a photoanode in dye-sensitized solar cells. RSC Adv. 5, 44398–44407 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Shang, H. Hou, F. Gao, L. Wang, W. Yang, Mesoporous Ag@TiO2 nanofibers and their photocatalytic activity for hydrogen evolution. RSC Adv. 7, 30051–30059 (2017)CrossRefGoogle Scholar
  25. 25.
    J. Rosenbaum, D.L. Versace, S. Abbad-Andallousi, R. Pires, C. Azevedo, P. Cénédese, P. Dubot, Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants. Biomater. Sci. 5, 455–462 (2017)CrossRefGoogle Scholar
  26. 26.
    W. Li, Y. Guo, P. Zhang, General strategy to prepare TiO2-core gold-shell nanoparticles as SERS-tags. J. Phys. Chem. C 114, 7263–7268 (2009)CrossRefGoogle Scholar
  27. 27.
    J. Singh, K. Sahu, A. Pandey, M. Kumar, T. Ghosh, B. Satpati, T. Som, S. Varma, D.K. Avasthi, S. Mohapatra, Atom beam sputtered Ag-TiO2 plasmonic nanocomposite thin films for photocatalytic applications. Appl. Surf. Sci. 411, 347–354 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Singh, K. Sahu, S. Mohapatra, Ion beam engineering of morphological, structural, optical and photocatalytic properties of Ag-TiO2-PVA nanocomposite thin film. Ceram. Int. 45, 7976–7983 (2019)CrossRefGoogle Scholar
  29. 29.
    Q. Luo, C. Zhang, X. Deng, H. Zhu, Z. Li, Z. Wang, X. Chen, S. Huang, Plasmonic effects of metallic nanoparticles on enhancing performance of perovskite solar cells. ACS Appl. Mater. Interfaces. 9, 34821–34832 (2017)CrossRefGoogle Scholar
  30. 30.
    D. Li, Y. Dong, B. Li, Y. Wu, K. Wang, S. Zhang, Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria. Analyst 140, 7672–7677 (2015)CrossRefGoogle Scholar
  31. 31.
    L. Yang, Y. Chen, H. Li, L. Luo, Y. Zhao, H. Zhang, Y. Tian, Application of silver nanoparticles decorated with β-cyclodextrin in determination of 6-mercaptopurine by surface-enhanced Raman spectroscopy. Anal. Methods 7, 6520–6527 (2015)CrossRefGoogle Scholar
  32. 32.
    C. Byram, S.S. Moram, V.R. Soma, SERS based detection of multiple analytes from dye/explosive mixtures using picosecond laser fabricated gold nanoparticles and nanostructures. Analyst 144, 2327–2336 (2019)CrossRefGoogle Scholar
  33. 33.
    W.Y. Wei, I.M. White, Chromatographic separation and detection of target analytes from complex samples using inkjet printed SERS substrates. Analyst 138, 3679–3686 (2013)CrossRefGoogle Scholar
  34. 34.
    V. Sharma, A. Bahuguna, V. Krishnan, Bioinspired dip catalysts for Suzuki-Miyaura cross-coupling reactions: effect of scaffold architecture on the performance of the catalyst. Adv. Mater. Interfaces 4, 1700604 (2017)CrossRefGoogle Scholar
  35. 35.
    V. Sharma, S. Kumar, A. Bahuguna, D. Gambhir, P.S. Sagara, V. Krishnan, Plant leaves as natural green scaffolds for palladium catalyzed Suzuki-Miyaura coupling reactions. Bioinspir Biomim. 12, 016010 (2016)CrossRefGoogle Scholar
  36. 36.
    M. Morita, T. Tachikawa, S. Seino, K. Tanaka, T. Majima, Controlled synthesis of gold nanoparticles on fluorescent nanodiamond via electron-beam-induced reduction method for dual-modal optical and electron bioimaging. ACS Appl. Nano Mater. 1, 355–363 (2017)CrossRefGoogle Scholar
  37. 37.
    Y. Wang, J. Wan, R.J. Miron, Y. Zhao, Y. Zhang, Antibacterial properties and mechanisms of gold-silver nanocages. Nanoscale 8, 11143–11152 (2016)CrossRefGoogle Scholar
  38. 38.
    G.F. Paciotti, J. Zhao, S. Cao, P.J. Brodie, L. Tamarkin, M. Huhta, L.D. Myer, J. Friedman, D.G. Kingston, Synthesis and evaluation of paclitaxel-loaded gold nanoparticles for tumor-targeted drug delivery. Bioconjug. Chem. 27, 2646–2657 (2016)CrossRefGoogle Scholar
  39. 39.
    H. Liu, L. Zhang, X. Lang, Y. Yamaguchi, H. Iwasaki, Y. Inouye, Q. Xue, M. Chen, Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci. Rep. 1, 00112 (2011)CrossRefGoogle Scholar
  40. 40.
    C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N.J. Halas, Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 5, 1569–1574 (2005)CrossRefGoogle Scholar
  41. 41.
    W. Niu, Y.A.A. Chua, W. Zhang, H. Huang, X. Lu, Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property. Chem. Soc. 137, 10460–10463 (2015)CrossRefGoogle Scholar
  42. 42.
    J.M.R. Herrera, A.L. González, L. Guerrini, F.R. Castiello, G. Alonso-Nuñez, O.E. Contreras, R.A. Alvarez-Puebla, A study of the depth and size of concave cube Au nanoparticles as highly sensitive SERS probes. Nanoscale 8, 7326–7333 (2016)CrossRefGoogle Scholar
  43. 43.
    V. Sharma, V. Krishnan, Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration. Sensors Actuat. B Chem. 262, 710–719 (2018)CrossRefGoogle Scholar
  44. 44.
    V. Sharma, R. Balaji, R. Walia, V. Krishnan, Au nanoparticle aggregates assembled on 3D mirror-like configuration using Canna generalis leaves for SERS applications. Colloid Interface Sci. Commun. 18, 9–12 (2017)CrossRefGoogle Scholar
  45. 45.
    V. Sharma, S. Kumar, A. Jaiswal, V. Krishnan, Gold deposited plant leaves for SERS: role of surface morphology, wettability and deposition technique in determining the enhancement factor and sensitivity of detection. Chem. Select. 2, 165–174 (2017)Google Scholar
  46. 46.
    V. Sharma, R. Balaji, A. Kumar, N. Kumari, V. Krishnan, Bioinspired 3D surface-enhanced Raman spectroscopy substrates for surface plasmon driven photoxidation reactions: role of catalyst and substrate in controlling the selectivity of product formation. ChemCatChem. 10, 975–979 (2018)CrossRefGoogle Scholar
  47. 47.
    K.Q. Lin, J. Yi, S. Hu, B.J. Liu, J.Y. Liu, X. Wang, B. Ren, Size Effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J. Phys. Chem. C 120, 20806–20813 (2016)CrossRefGoogle Scholar
  48. 48.
    J. Ohyama, A. Yamamoto, K. Teramura, T. Shishido, T. Tanaka, Modification of metal nanoparticles with TiO2 and metal-support interaction in photodeposition. ACS Catal. 1, 187–192 (2011)CrossRefGoogle Scholar
  49. 49.
    D.P.A.C. Gaspar, A.C. Pimentel, T. Mateus, J.P. Leitao, J. Soares, B.P. Falcao, A. Araújo, A. Vicente, S.A. Filonovich, H. Aguas, R. Martins, Influence of the layer thickness in plasmonic gold nanoparticles produced by thermal evaporation. Sci. Rep. 3, 1469 (2013)CrossRefGoogle Scholar
  50. 50.
    J. Guo, H. Yu, F. Dong, B. Zhu, W. Huang, S. Zhang, High efficiency and stability of Au-Cu/hydroxyapatite catalyst for the oxidation of carbon monoxide. RSC Adv. 7, 45420–45431 (2017)CrossRefGoogle Scholar
  51. 51.
    L. Delannoy, N.E. Hassan, A. Musi, N. Nguyen, L. To, J.M. Krafft, C. Louis, Preparation of supported gold nanoparticles by a modified incipient wetness impregnation method. J. Phys. Chem. B 110, 22471–22478 (2006)CrossRefGoogle Scholar
  52. 52.
    Y. Hatakeyama, K. Onishi, K. Nishikawa, Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv. 1, 1815–1821 (2011)CrossRefGoogle Scholar
  53. 53.
    G. Zhang, H. Duan, B. Lu, Z. Xu, Electrospinning directly synthesized metal nanoparticles decorated on both sidewalls of TiO2 nanotubes and their applications. Nanoscale 5, 5801–5808 (2013)CrossRefGoogle Scholar
  54. 54.
    Z.Y. Bao, X. Liu, J. Dai, Y. Wu, Y.H. Tsang, D.Y. Lei, In situ SERS monitoring of photocatalytic organic decomposition using recyclable TiO2-coated Ag nanowire arrays. Appl. Surf. Sci. 301, 351–357 (2014)CrossRefGoogle Scholar
  55. 55.
    S. Kumar, D.K. Lodhi, J.P. Singh, Highly sensitive multifunctional recyclable Ag-TiO2 nanorod SERS substrates for photocatalytic degradation and detection of dye molecules. RSC Adv. 6, 45120–45126 (2016)CrossRefGoogle Scholar
  56. 56.
    D. Georgescu, L. Baia, O. Ersen, M. Baia, S. Simon, Experimental assessment of the phonon confinement in TiO2 anatase nanocrystallites by Raman spectroscopy. J. Raman Spectrosc. 43, 876–883 (2012)CrossRefGoogle Scholar
  57. 57.
    T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 7, 321–324 (1978)CrossRefGoogle Scholar
  58. 58.
    X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, B. Zhao, Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys. Chem. Chem. Phys. 19, 11212–11219 (2017)CrossRefGoogle Scholar
  59. 59.
    Y. Yu, W. Wen, X.Y. Qian, J.B. Liu, J.M. Wu, UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations. Sci. Rep. 7, 41253 (2017)CrossRefGoogle Scholar
  60. 60.
    N. Serpone, D. Lawless, R. Khairutdinov, Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 99, 16646–16654 (1995)CrossRefGoogle Scholar
  61. 61.
    Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl. Phys. Lett. 78, 1125–1127 (2001)CrossRefGoogle Scholar
  62. 62.
    J.C. Yu, J. Yu, W. Ho, Z. Jiang, L. Zhang, Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808–3816 (2002)CrossRefGoogle Scholar
  63. 63.
    J. Liu, J. Li, A. Sedhain, J. Lin, H. Jiang, Structure and photoluminescence study of TiO2 nanoneedle texture along vertically aligned carbon nanofiber arrays. J. Phys. Chem. C 112, 17127–17132 (2008)CrossRefGoogle Scholar
  64. 64.
    Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl. Phys. Lett. 78, 1125–1127 (2001)CrossRefGoogle Scholar
  65. 65.
    K.K. Paul, P.K. Giri, Role of surface plasmons and hot electrons on the multi-step photocatalytic decay by defect enriched Ag@TiO2 nanorods under visible light. J. Phys. Chem. C 121, 20016–20030 (2017)CrossRefGoogle Scholar
  66. 66.
    W. Xie, R. Li, Q. Xu, Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep. 8, 8752 (2018)CrossRefGoogle Scholar
  67. 67.
    B. Xin, L. Jing, Z. Ren, B. Wang, H. Fu, Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J. Phys. Chem. B 109, 2805–2809 (2005)CrossRefGoogle Scholar
  68. 68.
    J. Singh, K. Sahu, B. Satpati, J. Shah, R.K. Kotnala, S. Mohapatra, Facile synthesis, structural and optical properties of Au-TiO2 plasmonic nanohybrids for photocatalytic applications. J. Phys. Chem. Solids 16, 109100 (2019)CrossRefGoogle Scholar
  69. 69.
    S.K. Khore, S.R. Kadam, S.D. Naik, B.B. Kale, R.S. Sonawane, Solar light active plasmonic Au@TiO2 nanocomposite with superior photocatalytic performance for H2 production and pollutant degradation. New J. Chem. 42, 10958–10968 (2018)CrossRefGoogle Scholar
  70. 70.
    M.R. Khan, T.W. Chuan, A. Yousuf, M.N.K. Chowdhury, C.K. Cheng, Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catal. Sci. Technol. 5, 2522–2531 (2015)CrossRefGoogle Scholar
  71. 71.
    R.S. Varma, N. Thorat, R. Fernandes, D.C. Kothari, N. Patel, A. Miotello, Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nanocomposites. Catal. Sci. Technol. 6, 8428–8440 (2016)CrossRefGoogle Scholar
  72. 72.
    X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, B. Zhao, Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys. Chem. Chem. Phys. 19, 11212–11219 (2017)CrossRefGoogle Scholar
  73. 73.
    L. Jiang, X. Liang, T. You, P. Yin, H. Wang, L. Guo, S. Yang, A sensitive SERS substrate based on Au/TiO2/Au nanosheets. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 142, 50–54 (2015)CrossRefGoogle Scholar
  74. 74.
    J. Wang, X. Wu, C. Wang, Z. Rong, H. Ding, H. Li, S. Li, N. Shao, P. Dong, R. Xiao, S. Wang, Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl. Mater. Interfaces 8, 19958–19967 (2016)CrossRefGoogle Scholar
  75. 75.
    Z. Furu, Z. Wu, J. Guo, D. Jia, Porous silicon photonic crystals coated with Ag nanoparticles as efficient substrates for detecting trace explosives using SERS. Nanomaterials 8, 872 (2018)CrossRefGoogle Scholar
  76. 76.
    R. Chuanmin, W. Wang, B. Gu, Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. J. Raman Spectrosc. 38, 568–573 (2007)CrossRefGoogle Scholar
  77. 77.
    G.N. Xiao, S.Q. Man, Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem. Phys. Lett. 447, 305–309 (2007)CrossRefGoogle Scholar
  78. 78.
    R.S. Dutta, M. Ghosh, J. Chowdhury, Adsorptive parameters and influence of hot geometries on the SER (R) S spectra of methylene blue molecules adsorbed on gold nanocolloidal particles. J. Raman Spectrosc. 46, 451–461 (2015)CrossRefGoogle Scholar
  79. 79.
    Y. Shan, Y. Yang, Y. Cao, H. Yin, N.V. Long, Z. Huang, Hydrogenated black TiO2 nanowires decorated with Ag nanoparticles as sensitive and reusable surface-enhanced Raman scattering substrates. RSC Adv. 5, 34737–34743 (2015)CrossRefGoogle Scholar
  80. 80.
    X. Jiang, X. Sun, D. Yin, X. Li, M. Yang, X. Han, L. Yang, B. Zhao, Recyclable Au-TiO2 nanocomposite SERS-active substrates contributed by synergistic charge-transfer effect. Phys. Chem. Chem. Phys. 19, 11212–11219 (2017)CrossRefGoogle Scholar
  81. 81.
    X. Li, G. Chen, L. Yang, Z. Jin, J. Liu, Multifunctional Au-coated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 20, 2815–2824 (2010)CrossRefGoogle Scholar
  82. 82.
    X. Li, H. Hu, D. Li, Z. Shen, Q. Xiong, S. Li, H.J. Fan, Ordered array of gold semishells on TiO2 spheres: an ultrasensitive and recyclable SERS substrate. ACS Appl. Mater. Interfaces 4, 2180–2185 (2012)CrossRefGoogle Scholar
  83. 83.
    I.M. Arabatzis, T. Stergiopoulos, D. Andreeva, S. Kitova, S.G. Neophytides, P. Falaras, Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J. Catal. 220, 127–135 (2003)CrossRefGoogle Scholar
  84. 84.
    C.A. D’Amato, R. Giovannetti, M. Zannotti, E. Rommozzi, S. Ferraro, C. Seghetti, M. Minicucci, R. Gunnella, C.A. Di, Enhancement of visible-light photoactivity by polypropylene coated plasmonic Au/TiO2 for dye degradation in water solution. Appl. Surf. Sci. 44, 575–587 (2018)CrossRefGoogle Scholar
  85. 85.
    Y. Yu, W. Wen, X.Y. Qian, J.B. Liu, J.M. Wu, UV and visible light photocatalytic activity of Au/TiO2 nanoforests with anatase/rutile phase junctions and controlled Au locations. Sci. Rep. 7, 41253 (2017)CrossRefGoogle Scholar
  86. 86.
    G. Cacciato, F. Ruffino, M. Zimbone, R. Reitano, V. Privitera, M.G. Grimaldi, Au thin films nano-structuration on polycrystalline anatase and rutile TiO2 substrates towards photocatalytic applications. Mater. Sci. Semicond. Process. 42, 40–44 (2016)CrossRefGoogle Scholar
  87. 87.
    R.S. Sonawane, M.K. Dongare, Sol-gel synthesis of Au/TiO2 thin films for photocatalytic degradation of phenol in sunlight. J. Mol. Catal. A Chem. 243, 68–76 (2006)CrossRefGoogle Scholar
  88. 88.
    L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, U.L. Štangar, M. Bergant, D. Mahne, Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology 18, 375709 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Institute of PhysicsBhubaneswarIndia

Personalised recommendations