Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16452–16462 | Cite as

Heterogeneous photo-Fenton degradation of rhodamine B dye via a high visible-light responsive Bi2WO6 and BiFeO3 heterojunction composites

  • Tianye Wang
  • Wei Mao
  • Yangsheng Wu
  • Yichen Bai
  • Yunhang Gao
  • Shuxia LiuEmail author
  • Haiwei Wu
Article
  • 9 Downloads

Abstract

A novel Bi2WO6 and BiFeO3 heterojunction composites with enhanced visible-light response ability have been successfully synthesized via a facile solvothermal route, which possessed high heterogeneous photo-Fenton for degrading rhodamine B dye. The results of characterizations suggested that the composites of Bi2WO6 and BiFeO3 not only have been synthesized, but also the heterojunction structure have been formed. It was found that the stepped construction of Bi2WO6/BiFeO3 heterojunction can minify the band gap to promote the separation and migration of the photogenerated electron–hole pairs, thus Bi2WO6/BiFeO3 exhibited better visible-light response and photocatalytic activity than that of pure Bi2WO6, degrading Rhodamine B (RhB) 98.07% within 75 min. BiFeO3 did not exhibited the visible photocatalytic activity as same as Bi2WO6, however, it was illustrated that the heterogeneous photo-Fenton reaction can be facilitated through coupling BiFeO3. Moreover, the enhanced photocatalytic activity of Bi2WO6/BiFeO3 could further promote the Fe2+/Fe3+ cycling to form an excellent photo-Fenton system. Hence, photo-Fenton system of Bi2WO6/BiFeO3 could generate more free radicals to more efficiently degrade RhB, achieving nearly 100% after 20 min of treatment.

Notes

Acknowledgements

The present work was financially supported by Thirteenth Five-Year Science and Technology Project of the Education Department of Jilin Province in 2018 (JJKH20180653KJ) and (JJKH20180686KJ), PhD start-up fund of Jilin Agricultural University (201723), Outstanding Young Talents Fund Project of Jilin Provincial Department of Science and Technology in 2019 (20190103109JH), National Key Research and Development Program (2017YFD0300405-4), Special Construction of Modern Agricultural Industrial Technology Systems (nycytx-38).

References

  1. 1.
    A. Kumar, S.K. Sharma, G. Sharma et al., J. Hazard. Mater. 364, 429 (2018).  https://doi.org/10.1016/j.jhazmat.2018.10.060 CrossRefGoogle Scholar
  2. 2.
    Y. Boyjoo, H. Sun, J. Liu, V.K. Pareek, S. Wang, Chem. Eng. J. 310, 537 (2017).  https://doi.org/10.1016/j.cej.2016.06.090 CrossRefGoogle Scholar
  3. 3.
    H. Kooshki, A. Sobhani-Nasab, M. Eghbali-Arani, F. Ahmadi, V. Ameri, M. Rahimi-Nasrabadi, Sep. Purif. Technol. 211, 873 (2019).  https://doi.org/10.1016/j.seppur.2018.10.057 CrossRefGoogle Scholar
  4. 4.
    A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi et al., Mater. Lett. 238, 159 (2019).  https://doi.org/10.1016/j.matlet.2018.11.175 CrossRefGoogle Scholar
  5. 5.
    A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, J. Mater. Sci. 30, 5854 (2019).  https://doi.org/10.1007/s10854-019-00883-3 Google Scholar
  6. 6.
    J. Yi, H. Mo, B. Zhang, J. Song, D. Liu, G. Zhuo, Sep. Purif. Technol. 211, 474 (2019).  https://doi.org/10.1016/j.seppur.2018.10.022 CrossRefGoogle Scholar
  7. 7.
    N. Tahmasebi, Z. Maleki, P. Farahnak, Mater. Sci. Semicond. Process. 89, 32 (2019).  https://doi.org/10.1016/j.mssp.2018.08.026 CrossRefGoogle Scholar
  8. 8.
    H. Najafian, F. Manteghi, F. Beshkar, M. Salavati-Niasari, J. Hazard. Mater. 361, 210 (2019).  https://doi.org/10.1016/j.jhazmat.2018.08.092 CrossRefGoogle Scholar
  9. 9.
    L. Zhang, G. Wang, Z. Xiong, H. Tang, C. Jiang, Appl. Surf. Sci. 436, 162 (2018).  https://doi.org/10.1016/j.apsusc.2017.11.280 CrossRefGoogle Scholar
  10. 10.
    X. Hu, W. Wang, G. Xie et al., Chemosphere 216, 733 (2019).  https://doi.org/10.1016/j.chemosphere.2018.10.181 CrossRefGoogle Scholar
  11. 11.
    S. Zhong, C. Lv, S. Zou, F. Zhang, S. Zhang, J. Mater. Sci. 29, 2447 (2018).  https://doi.org/10.1007/s10854-017-8164-z Google Scholar
  12. 12.
    W. Zhang, J. Wang, Y. Yang, Y. Liang, Z. Gao, J. Colloid Interface Sci. 531, 502 (2018).  https://doi.org/10.1016/j.jcis.2018.07.076 CrossRefGoogle Scholar
  13. 13.
    Y. Zhou, P. Lv, W. Zhang et al., Appl. Surf. Sci. 457, 925 (2018).  https://doi.org/10.1016/j.apsusc.2018.07.024 CrossRefGoogle Scholar
  14. 14.
    W. Mao, T. Wang, H. Wang, S. Zou, S. Liu, J. Mater. Sci. 29, 15174 (2018).  https://doi.org/10.1007/s10854-018-9659-y Google Scholar
  15. 15.
    C.-Y. Zou, S.-Q. Liu, Z. Shen, Y. Zhang, N.-S. Jiang, W.-C. Ji, Chin. J. Catal. 38, 20 (2017).  https://doi.org/10.1016/s1872-2067(17)62752-9 CrossRefGoogle Scholar
  16. 16.
    T. Zhang, Y. Shen, Y. Qiu et al., ACS Sustain. Chem. Eng. 5, 4630 (2017).  https://doi.org/10.1021/acssuschemeng.6b03138 CrossRefGoogle Scholar
  17. 17.
    T. Xian, H. Yang, J.F. Dai, Z.Q. Wei, J.Y. Ma, W.J. Feng, Mater. Lett. 65, 1573 (2011).  https://doi.org/10.1016/j.matlet.2011.02.080 CrossRefGoogle Scholar
  18. 18.
    G. Zhang, L. Zhang, Y. Liu et al., ACS Appl. Mater. Interfaces. 8, 26783 (2016).  https://doi.org/10.1021/acsami.6b08676 CrossRefGoogle Scholar
  19. 19.
    J. Yin, G. Liao, J. Zhou et al., Sep. Purif. Technol. 168, 134 (2016).  https://doi.org/10.1016/j.seppur.2016.05.049 CrossRefGoogle Scholar
  20. 20.
    T. Soltani, B.-K. Lee, Chem. Eng. J. 313, 1258 (2017).  https://doi.org/10.1016/j.cej.2016.11.016 CrossRefGoogle Scholar
  21. 21.
    Y. Jia, C. Wu, D.-H. Kim et al., Chem. Eng. J. 337, 709 (2018).  https://doi.org/10.1016/j.cej.2017.12.137 CrossRefGoogle Scholar
  22. 22.
    P. Li, L. Li, M. Xu, Q. Chen, Y. He, Appl. Surf. Sci. 396, 879 (2017).  https://doi.org/10.1016/j.apsusc.2016.11.052 CrossRefGoogle Scholar
  23. 23.
    Y.P. Bhoi, B.G. Mishra, Chem. Eng. J. 344, 391 (2018).  https://doi.org/10.1016/j.cej.2018.03.094 CrossRefGoogle Scholar
  24. 24.
    S. Chaiwichian, K. Wetchakun, W. Kangwansuparnonkon, N. Wetchakun, J. Photochem. Photobiol., A 349, 183 (2017).  https://doi.org/10.1016/j.jphotochem.2017.09.034 CrossRefGoogle Scholar
  25. 25.
    T. Wang, W. Liu, Y. Gao, S. Liu, J. Mater. Sci. 28, 14949 (2017).  https://doi.org/10.1007/s10854-017-7367-7 Google Scholar
  26. 26.
    H. Zhang, S. Cheng, B. Li, X. Cheng, Q. Cheng, Sep. Purif. Technol. 202, 242 (2018).  https://doi.org/10.1016/j.seppur.2018.03.072 CrossRefGoogle Scholar
  27. 27.
    S. Zhong, F. Zhang, W. Lu, T. Wang, L. Qu, RSC Adv. 5, 68646 (2015).  https://doi.org/10.1039/c5ra08538a CrossRefGoogle Scholar
  28. 28.
    G. Wang, S. Liu, T. He et al., Mater. Res. Bull. 104, 104 (2018).  https://doi.org/10.1016/j.materresbull.2018.04.013 CrossRefGoogle Scholar
  29. 29.
    A. Malathi, P. Arunachalam, V.S. Kirankumar, J. Madhavan, A.M. Al-Mayouf, Opt. Mater. 84, 227 (2018).  https://doi.org/10.1016/j.optmat.2018.06.067 CrossRefGoogle Scholar
  30. 30.
    J. Tang, R. Wang, M. Liu et al., Chem. Eng. J. 351, 1056 (2018).  https://doi.org/10.1016/j.cej.2018.06.171 CrossRefGoogle Scholar
  31. 31.
    H. Zhou, Z. Wen, J. Liu, J. Ke, X. Duan, S. Wang, Appl. Catal. B 242, 76 (2019).  https://doi.org/10.1016/j.apcatb.2018.09.090 CrossRefGoogle Scholar
  32. 32.
    S.P. Pattnaik, A. Behera, S. Martha, R. Acharya, K. Parida, J. Nanoparticle Res. 20, 10 (2018).  https://doi.org/10.1007/s11051-017-4110-5 CrossRefGoogle Scholar
  33. 33.
    Y. Shang, Y. Cui, R. Shi, P. Yang, Mater. Sci. Semicond. Process. 89, 240 (2019).  https://doi.org/10.1016/j.mssp.2018.09.026 CrossRefGoogle Scholar
  34. 34.
    Y. Zhou, Z. Tian, Z. Zhao et al., ACS Appl. Mater. Interfaces. 3, 3594 (2011).  https://doi.org/10.1021/am2008147 CrossRefGoogle Scholar
  35. 35.
    T. Soltani, A. Tayyebi, B.-K. Lee, Catal. Today (2018).  https://doi.org/10.1016/j.cattod.2018.09.030 Google Scholar
  36. 36.
    E. Shang, Y. Li, J. Niu, S. Li, G. Zhang, X. Wang, Chemosphere 211, 34 (2018).  https://doi.org/10.1016/j.chemosphere.2018.07.130 CrossRefGoogle Scholar
  37. 37.
    T. Wang, S. Zhong, S. Zou, F. Jiang, L. Feng, X. Su, Photochem. Photobiol. (2017).  https://doi.org/10.1111/php.12739 Google Scholar
  38. 38.
    T. Wang, G. Xiao, C. Li, S. Zhong, F. Zhang, Mater. Lett. 138, 81 (2015).  https://doi.org/10.1016/j.matlet.2014.09.106 CrossRefGoogle Scholar
  39. 39.
    Z. Zhu, W. Fan, Z. Liu et al., J. Photochem. Photobiol., A 358, 284 (2018).  https://doi.org/10.1016/j.jphotochem.2018.03.027 CrossRefGoogle Scholar
  40. 40.
    R. Tao, C. Shao, X. Li et al., J. Colloid Interface Sci. 529, 404 (2018).  https://doi.org/10.1016/j.jcis.2018.06.035 CrossRefGoogle Scholar
  41. 41.
    L. Zhou, J. Lei, L. Wang, Y. Liu, J. Zhang, Appl. Catal. B (2017).  https://doi.org/10.1016/j.apcatb.2017.08.039 Google Scholar
  42. 42.
    Y. Wang, Y. Zeng, X. Chen et al., Green Chem. (2018).  https://doi.org/10.1039/C7GC03731G Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tianye Wang
    • 1
    • 2
  • Wei Mao
    • 1
    • 2
  • Yangsheng Wu
    • 1
    • 2
  • Yichen Bai
    • 1
    • 2
  • Yunhang Gao
    • 3
  • Shuxia Liu
    • 1
    • 2
    Email author
  • Haiwei Wu
    • 4
  1. 1.College of Resources and EnvironmentJilin Agricultural UniversityChangchunChina
  2. 2.Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain BasesChangchunChina
  3. 3.College of Animal Science and TechnologyJilin Agricultural UniversityChangchunChina
  4. 4.School of Engineering and TechnologyJilin Agricultural UniversityChangchunChina

Personalised recommendations