Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16439–16445 | Cite as

Influence of pH values on tin sulfide films deposited on copper substrates by CBD

  • M. M. Oropeza-Saucedo
  • R. Romano-TrujilloEmail author
  • E. Rosendo
  • N. R. Silva-González
  • A. Coyopol
  • J. M. Gracia-Jiménez
  • T. Díaz-Becerril
  • R. Galeazzi
  • F. G. Nieto-Caballero
  • G. García
  • C. Morales
Article
  • 48 Downloads

Abstract

In this work, SnS films were deposited on copper substrates under different pH values by chemical bath deposition. The pH values were varied from 8.44 to 11.26 and SnS films were obtained at 10.62. Films of Sn6O4(OH)4 were obtained for pH values lower than 10.62 and mixed phases of SnS and Sn2S3 were formed at pH 11.26. The deposition parameters were 70 °C for 3 h for all samples. Structural, morphological and optical properties were analyzed by XRD, SEM and UV–Vis–NIR respectively. In addition, vibrational modes for Sn6O4(OH)4 and SnS films were identified by Raman spectroscopy from 60 to 380 cm−1. SnS films exhibited an orthorhombic structure and a crystal size of 15 nm. The morphology of the films was transformed from pyramidal to rice shape as the pH was increased. Gap value for Sn6O4(OH)4 films was found to be 3.11 eV and for SnS was 1.17 eV, however, for mixed SnS and Sn2S3 films the gap value was 0.61 eV. The thickness of SnS films was around 1.7 micrometers, which is an appropriate value for solar cells applications as absorber material.

Notes

Acknowledgements

M. M. Oropeza-Saucedo acknowledges the support received from VIEP-BUAP and thanks for the scholarship received from CONACyT. Authors are grateful to Dra. Laura Elvira Serrano for characterizations assistance in IFUAP laboratories. Also thanks to Dra. Primavera López for XRD measurements in CIDS-BUAP.

References

  1. 1.
    Y. Kumagai, L.A. Burton, A. Walsh, F. Oba, Phys. Rev. Appl. 6, 14009 (2016)CrossRefGoogle Scholar
  2. 2.
    U. Chalapathi, B. Poornaprakash, S.H. Park, Sol. Energy 139, 238 (2016)CrossRefGoogle Scholar
  3. 3.
    K. Hartman, J.L. Johnson, M.I. Bertoni, D. Recht, M.J. Aziz, M.A. Scarpulla, T. Buonassisi, Thin Solid Films 519, 7421 (2011)CrossRefGoogle Scholar
  4. 4.
    T.S. Reddy, M.C.S. Kumar, RSC Adv. 6, 95680 (2016)CrossRefGoogle Scholar
  5. 5.
    R.E. Banai, H. Lee, M.A. Motyka, R. Chandrasekharan, N.J. Podraza, J.R.S. Brownson, M.W. Horn, IEEE J. Photovolt. 3, 1084 (2013)CrossRefGoogle Scholar
  6. 6.
    G.G. Guillen, M.I.M. Palma, B. Krishnan, D.A. Avellaneda, S. Shaji, J. Mater. Sci. 27, 6859 (2016)Google Scholar
  7. 7.
    T.H. Sajeesh, A.S. Cherian, C.S. Kartha, K.P. Vijayakumar, Energy Procedia 15, 325 (2012)CrossRefGoogle Scholar
  8. 8.
    J. Henry, K. Mohanraj, S. Kannan, S. Barathan, G. Sivakumar, J. Exp. Nanosci. 10, 78 (2015)CrossRefGoogle Scholar
  9. 9.
    S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, Semiconductors 45, 749 (2011)CrossRefGoogle Scholar
  10. 10.
    N. Sato, M. Ichimura, E. Arai, Y. Yamazaki, Sol. Energy Mater. Sol. Cells 85, 153 (2005)CrossRefGoogle Scholar
  11. 11.
    U. Chalapathi, B. Poornaprakash, S.H. Park, Superlattices Microstruct. 103, 221 (2017)CrossRefGoogle Scholar
  12. 12.
    P. Kevin, D.J. Lewis, J. Raftery, M.A. Malik, P. O’Brien, J. Cryst. Growth 415, 93 (2015)CrossRefGoogle Scholar
  13. 13.
    M.S. Selim, M.E. Gouda, M.G. El-Shaarawy, A.M. Salem, W.A.A. El-Ghany, Thin Solid Films 527, 164 (2013)CrossRefGoogle Scholar
  14. 14.
    M. Michalska, M. Andrzejczuk, K. Oberda, J. Alloys Compd. 726, 388 (2017)CrossRefGoogle Scholar
  15. 15.
    L.A. Burton, D. Colombara, R.D. Abellon, F.C. Grozema, L.M. Peter, T.J. Savenije, G. Dennler, A. Walsh, Chem. Mater. 25, 4908 (2013)CrossRefGoogle Scholar
  16. 16.
    D.J. Lewis, P. Kevin, O. Bakr, C.A. Muryn, M.A. Malik, P. O’Brien, Inorg. Chem. Front. 1, 577 (2014)CrossRefGoogle Scholar
  17. 17.
    S. M. Herron, A. Wangperawong, S. F. Bent, Conf. Rec. IEEE photovoltaic specialists conference Ii, 000368 (2011)Google Scholar
  18. 18.
    S.S. Tulenin, A.A. Timina, L.N. Maskaeva, V.F. Markov, Russ. J. Appl. Chem. 90, 91 (2017)CrossRefGoogle Scholar
  19. 19.
    P.P. Hankare, A.V. Jadhav, P.A. Chate, K.C. Rathod, P.A. Chavan, S.A. Ingole, J. Alloys Compd. 463, 581 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Ghosh, S. Roy, J. Sol-Gel. Sci. Technol. 81, 769 (2017)CrossRefGoogle Scholar
  21. 21.
    J. Ning, Q. Dai, T. Jiang, K. Men, D. Liu, N. Xiao, C. Li, D. Li, B. Liu, B. Zou, G. Zou, W.W. Yu, Langmuir 25, 1818 (2009)CrossRefGoogle Scholar
  22. 22.
    J. Xiao, Q.L. Wu, P. Liu, Y. Liang, H.B. Li, M.M. Wu, G.W. Yang, Nanotechnology 25, 135702 (2014)CrossRefGoogle Scholar
  23. 23.
    F. Pinakidou, E. Kaprara, M. Katsikini, E.C. Paloura, K. Simeonidis, M. Mitrakas, Sci. Total Environ. 551, 246 (2016)CrossRefGoogle Scholar
  24. 24.
    G.H. Yue, D.L. Peng, P.X. Yan, L.S. Wang, W. Wang, X.H. Luo, J. Alloys Compd. 468, 254 (2009)CrossRefGoogle Scholar
  25. 25.
    A.J. Ragina, K.V. Murali, K.C. Preetha, K. Deepa, T.L. Remadevi, J. Mater. Sci. 23, 2264 (2012)Google Scholar
  26. 26.
    J. Khanderi, L. Shi, A. Rothenberger, Inorg. Chim. Acta 427, 27 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Sohila, M. Rajalakshmi, C. Ghosh, A.K. Arora, C. Muthamizhchelvan, J. Alloys Compd. 509, 5843 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Bhorde, A. Pawbake, P. Sharma, S. Nair, A. Funde, P. Bankar, M. More, S. Jadkar, Appl. Phys. Mater. Sci. Process. 124, 1 (2018)CrossRefGoogle Scholar
  29. 29.
    F. Ballipinar, A.C. Rastogi, J. Alloys Compd. 728, 179 (2017)CrossRefGoogle Scholar
  30. 30.
    J.S. Cruz, K.M. Leyva, N.R. Mathews, A.M. Galván, X. Mathew, Chalcogenide Lett. 12, 415 (2015)Google Scholar
  31. 31.
    V.V. Brus, I.S. Babichuk, I.G. Orletskyi, P.D. Maryanchuk, V.O. Yukhymchuk, V.M. Dzhagan, I.B. Yanchuk, M.M. Solovan, I.V. Babichuk, Appl. Opt. 55, B158 (2016)CrossRefGoogle Scholar
  32. 32.
    J. Li, J. Huang, Y. Zhang, Y. Wang, C. Xue, G. Jiang, W. Liu, C. Zhu, RSC Adv. 6, 58786 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Rebollo-Plata, M.P. Sampedro, G. Gallardo-Gomez, N. Ortega-Miranda, C.F. Bravo-Barrera, G. Daniel-Perez, B. Zenteno-Mateo, D. Hernandez-Cruz, S. Jimenez-Sandoval, Rev. Mex. Fisica 60, 227 (2014)Google Scholar
  34. 34.
    J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, J. Raman Spectrosc. 30, 413 (1999)CrossRefGoogle Scholar
  35. 35.
    B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, Th Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, C. Ronning, Phys. Status Solidi B 249, 1487 (2012)CrossRefGoogle Scholar
  36. 36.
    J.I. Pankove, Optical processes in semiconductors (Dover Publications Inc, New York, 1971), pp. 4–10Google Scholar
  37. 37.
    A. Elhat, M. Rouchdi, A. Hadri, C. Nassiri, F.Z. Chafi, B. Fares, L. Laanab, N. Hassanain, H. Labrim, A. Mzerd, Renew. Sustain. Energy Conf. 978, 195 (2016)Google Scholar
  38. 38.
    L. Sun, R. Haight, P. Sinsermsuksakul, S.B. Kim, H.H. Park, R.G. Gordon, Appl. Phys. Lett. 103, 181904 (2013)CrossRefGoogle Scholar
  39. 39.
    T. Nomura, T. Maeda, T. Wada, Jpn. J. Appl. Phys. 52, 04CR08 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Khadraoui, N. Benramdane, C. Mathieu, A. Bouzidi, R. Miloua, Z. Kebbab, K. Sahraoui, R. Desfeux, Solid State Commun. 150, 297 (2010)CrossRefGoogle Scholar
  41. 41.
    Z. Jia, Q. Chen, J. Chen, T. Wang, Z. Li, X. Dou, RSC Adv. 5, 28885 (2015)CrossRefGoogle Scholar
  42. 42.
    Q. Chen, X. Dou, Y. Ni, S. Cheng, S. Zhuang, J. Colloid Interface Sci. 376, 327 (2012)CrossRefGoogle Scholar
  43. 43.
    M.M. Bletskan, D.I. Bletskan, J. Optoelectron. Adv. Mater. 16, 659 (2014)Google Scholar
  44. 44.
    T.J. Whittles, L.A. Burton, J.M. Skelton, A. Walsh, T.D. Veal, V.R. Dhanak, Chem. Mater. 28, 3718 (2016)CrossRefGoogle Scholar
  45. 45.
    K. Assili, K. Alouani, X. Vilanova, Semicond. Sci. Technol. 32, 25002 (2017)CrossRefGoogle Scholar
  46. 46.
    M.M. El-Nahass, H.M. Zeyada, M.S. Aziz, N.A. El-Ghamaz, Opt. Mater. 20, 159 (2002)CrossRefGoogle Scholar
  47. 47.
    A. Tanuševski, Semicond. Sci. Technol. 18, 501 (2003)CrossRefGoogle Scholar
  48. 48.
    Y. Gupta, C. Ravikant, A. Palakkandy, Glob. Chall. 2, 1800017 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. M. Oropeza-Saucedo
    • 1
  • R. Romano-Trujillo
    • 1
    Email author
  • E. Rosendo
    • 1
  • N. R. Silva-González
    • 2
  • A. Coyopol
    • 1
  • J. M. Gracia-Jiménez
    • 2
  • T. Díaz-Becerril
    • 1
  • R. Galeazzi
    • 1
  • F. G. Nieto-Caballero
    • 1
  • G. García
    • 1
  • C. Morales
    • 1
  1. 1.Centro de Investigación en Dispositivos SemiconductoresInstituto de Ciencias, BUAPPueblaMexico
  2. 2.Instituto de Física, BUAPPueblaMexico

Personalised recommendations