Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16415–16420 | Cite as

Electrical bistabilities behaviour of all-solution-processed non-volatile memories based on graphene quantum dots embedded in graphene oxide layers

  • Muhammad Musoddiq Jaafar
  • Poh Choon OoiEmail author
  • M. F. Mohd. Razip WeeEmail author
  • Muhammad Aniq Shazni Mohammad Haniff
  • Mohd Ambri Mohamed
  • Edward Yi Chang
  • Burhanuddin Yeop Majlis
  • Chang Fu DeeEmail author


This study demonstrates the feasibility of all-solution-processed mean to fabricate carbon-based non-volatile memory (NVM). The NVM devices were fabricated on polyethylene terephthalate (PET) substrate using spin-coating and spray-coating techniques in the structure of silver nanowires (AgNWs)/graphene oxide (GO)/graphene quantum dots (GQDs)/graphene oxide (GO)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/PET. PEDOT:PSS was used as the bottom conductive layer and deposited by spin-coating method. GQDs were used as a charge trapping site in the structure and embedded in the two GO insulator layers. The AgNW metal electrode was formed on top of GO/GQDs/GO/PEDOT:PSS by the spray-coating method. The overall smooth surface morphology of the spray-coated films serves as good contact with the top metal electrode. The electrical characterization of the fabricated device shows the bistable current states with the ON/OFF ratio of 105. The NVM device can be programmed and erased multiple times. Various conduction mechanisms were proposed to describe the charge trapping process in GQD based on the obtained current–voltage measurement.



This study was financially supported by the Research University Grant from Universiti Kebangsaan Malaysia (GUP-2018-085), LRGS/NANOMITE/UKM-UKM/04/01 from the Ministry of Education Malaysia, and “Center for the Semiconductor Technology Research” from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. This work also supported in part by the Ministry of Science and Technology, Taiwan, under Grant MOST-108-3017-F-009-003. We would also like to further extend our gratitude to Skim Zamalah Penyelidik Tersorhor from Pusat Pengurusan Penyelidikan dan Instrumentasi (CRIM), Universiti Kebangsaan Malaysia.


  1. 1.
    Y. Zhai, J.-Q. Yang, Y. Zhou, J.-Y. Mao, Y. Ren, V.A. Roy, S.-T. Han, Mater. Horizons 5, 641 (2018)CrossRefGoogle Scholar
  2. 2.
    Y. Shan, Z. Lyu, X. Guan, A. Younis, G. Yuan, J. Wang, S. Li, T. Wu, Phys. Chem. Chem. Phys. 20, 23837 (2018)CrossRefGoogle Scholar
  3. 3.
    P.C. Ooi, M.A.S. Mohammad Haniff, M.F. Mohd Razip Wee, B.T. Goh, C.F. Dee, M.A. Mohamed, B.Y. Majlis, Sci. Rep. 9, 6761 (2019). CrossRefGoogle Scholar
  4. 4.
    S.S. Joo, J. Kim, S.S. Kang, S. Kim, S.-H. Choi, S.W. Hwang, Nanotechnology 25, 255203 (2014)CrossRefGoogle Scholar
  5. 5.
    P.C. Ooi, J. Lin, T.W. Kim, F. Li, Org. Electron. 38, 379 (2016)CrossRefGoogle Scholar
  6. 6.
    M.H. Mohammad, N.A. Zainal, S.M. Hafiz, P.C. Ooi, M.I. Syono, A.M. Hashim, ACS Appl. Mater. Interfaces 11, 4625 (2019). CrossRefGoogle Scholar
  7. 7.
    S.K. Pradhan, B. Xiao, S. Mishra, A. Killam, A.K. Pradhan, Sci. Rep. 6, 2673 (2016)Google Scholar
  8. 8.
    B.F. Bory, P.R. Rocha, H.L. Gomes, D.M. De Leeuw, S.C. Meskers, J. Appl. Phys. 118, 205503 (2015)CrossRefGoogle Scholar
  9. 9.
    K.-J. Heo, W.-Y. Kim, S.-J. Kim, J. Nanosci. Nanotechnol. 16, 6304 (2016)CrossRefGoogle Scholar
  10. 10.
    M.-J. Lee, C.B. Lee, D. Lee, S.R. Lee, J. Hur, S.-E. Ahn, M. Chang, Y.-B. Kim, U.-I. Chung, C.-J. Kim, IEEE Electron. Device Lett. 31, 725 (2010)CrossRefGoogle Scholar
  11. 11.
    P.C. Ooi, M.A.S.M. Haniff, M.F.M.R. Wee, C.F. Dee, B.T. Goh, M.A. Mohamed, B.Y. Majlis, Carbon 124, 547 (2017). CrossRefGoogle Scholar
  12. 12.
    E.A. Bakar, M.A. Mohamed, P.C. Ooi, M.F.M.R. Wee, C.F. Dee, B.Y. Majlis, Org. Electron. 61, 289 (2018). CrossRefGoogle Scholar
  13. 13.
    Q. Zheng, B. Zhang, X. Lin, X. Shen, N. Yousefi, Z.-D. Huang, Z. Li, J.-K. Kim, J. Mater. Chem. 22, 25072 (2012)CrossRefGoogle Scholar
  14. 14.
    S. Deng, V. Berry, Mater. Today 19, 197 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Shen, X. Lin, N. Yousefi, J. Jia, J.-K. Kim, Carbon 66, 84 (2014)CrossRefGoogle Scholar
  16. 16.
    P.C. Ooi, M.F.M.R. Wee, C.F. Dee, C.C. Yap, M.M. Salleh, B.Y. Majlis, Thin Solid Films 645, 45 (2018). CrossRefGoogle Scholar
  17. 17.
    H. Yamamoto, H. Kasajima, W. Yokoyama, H. Sasabe, C. Adachi, Appl Phys Lett 86, 083502 (2005). CrossRefGoogle Scholar
  18. 18.
    R. Yang, C. Zhu, J. Meng, Z. Huo, M. Cheng, D. Liu, W. Yang, D. Shi, M. Liu, G. Zhang, Sci. Rep. 3, 2126 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Microengineering and NanoelectronicsUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.International College of Semiconductor TechnologyNational Chiao Tung UniversityHsinchuTaiwan, ROC
  3. 3.Advanced Devices LabMIMOS BerhadKuala LumpurMalaysia
  4. 4.Department of Electronics EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC
  5. 5.Department of Materials Science and EngineeringNational Chiao Tung UniversityHsinchuTaiwan, ROC

Personalised recommendations