Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16407–16414 | Cite as

Phase evolution, microstructure, thermal stability of (K0.45Na0.45Li0.04La0.02)NbO3–Bi(Ni0.5Zr0.5)O3 ceramics

  • Xiuli ChenEmail author
  • Jie Sun
  • Xu Li
  • Xiao Yan
  • Xiaoxia Li
  • Junpeng Shi
  • Congcong Sun
  • Feihong Pang
  • Huanfu Zhou
Article
  • 45 Downloads

Abstract

(K0.45Na0.45Li0.04La0.02)NbO3–Bi(Ni0.5Zr0.5)O3[(1 − x)KNLLN-xBNZ, 0 ≤ x ≤ 0.02] ceramics were fabricated via a traditional solid state reaction method. The addition of BNZ can enhance the electrical properties of KNLLN ceramics. As x = 0.015, the sample had good performance with high εr ~ 1665 and excellent thermal stability (Δε/ε100°C ≤ ± 12%) from 100 to 447 °C, indicating that this ceramic has potential application prospects in wider working-temperature range. The electrical behavior at high temperatures of (1 − x)KNLLN-xBNZ ceramics was also analyzed. The results show that the relaxation induced by the double ionized oxygen vacancies is thermally activated.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 11664008 and 61761015), Natural Science Foundation of Guangxi (Nos. 2018GXNSFFA050001, 2017GXNSFDA198027 and 2017GXNSFFA198011).

References

  1. 1.
    J.-J. Zhou, J.-F. Li, X.-W. Zhang, J. Eur. Ceram. Soc. 32(2), 267–270 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Khesro, D. Wang, F. Hussain, D.C. Sinclair, A. Feteira, I.M. Reaney, Appl. Phys. Lett. 109(14), 142907 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Wang, J. Wu, D. Xiao, X. Cheng, T. Zheng, B. Zhang, X. Lou, J. Zhu, J. Mater. Chem. A 2(12), 4122 (2014)CrossRefGoogle Scholar
  4. 4.
    J. Wu, D. Xiao, Y. Wang, J. Zhu, W. Shi, W. Wu, B. Zhang, J. Li, J. Alloys Compd. 476(1–2), 782–786 (2009)CrossRefGoogle Scholar
  5. 5.
    K. Wang, J.-F. Li, J. Adv. Ceram. 1(1), 24–37 (2012)CrossRefGoogle Scholar
  6. 6.
    P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, X. Zhang, Adv. Mater. 30, 8 (2018)Google Scholar
  7. 7.
    F. Azough, M. Wegrzyn, R. Freer, S. Sharma, D. Hall, J. Eur. Ceram. Soc. 31(4), 569–576 (2011)CrossRefGoogle Scholar
  8. 8.
    D. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q. Zhao, I.M. Reaney, J. Am. Ceram. Soc. 100(2), 627–637 (2017)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, S. Jiang, K. Kajiyoshi, J. Alloys Compd. 495(1), 173–180 (2010)CrossRefGoogle Scholar
  10. 10.
    J. Bernard, A. Benčan, T. Rojac, J. Holc, B. Malič, M. Kosec, J. Am. Ceram. Soc. 91(7), 2409–2411 (2008)CrossRefGoogle Scholar
  11. 11.
    L. Zhengfa, L. Yongxiang, Z. Jiwei, Curr. Appl. Phys. 11(3), S2–S13 (2011)CrossRefGoogle Scholar
  12. 12.
    F. He, X. Chen, J. Chen, Y. Wang, H. Zhou, L. Fang, J. Mater. Sci. 24(11), 4346–4350 (2013)Google Scholar
  13. 13.
    X. Chen, X. Yan, G. Liu, X. Li, G. Huang, H. Zhou, J. Electron. Mater. 47(1), 794–799 (2018)CrossRefGoogle Scholar
  14. 14.
    G. Liu, X. Chen, G. Huang, D. Ma, H. Zhou, J. Mater. Sci. 28(5), 3931–3935 (2016)Google Scholar
  15. 15.
    F. Rubio-Marcos, J.J. Romero, M.G. Navarro-Rojero, J.F. Fernandez, J. Eur. Ceram. Soc. 29(14), 3045–3052 (2009)CrossRefGoogle Scholar
  16. 16.
    D.B. Deutz, N.T. Mascarenhas, S. Van Der Zwaag, W.A. Groen, J. Am. Ceram. Soc. 100(3), 1108–1117 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Gao, K.W. Kwok, D. Lin, H.L.W. Chan, J. Phys. D 42(3), 035411 (2009)CrossRefGoogle Scholar
  18. 18.
    D. Yang, Z. Yang, X. Zhang, L. Wei, X. Chao, Z. Yang, J. Alloys Compd. 716, 21–29 (2017)CrossRefGoogle Scholar
  19. 19.
    D. Lin, K.W. Kwok, Int. J. Appl. Ceram. Technol. 8(3), 684–690 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Sun, X. Chen, X. Li, X. Yan, X. Li, H. Zhou, X. Liu, H. Ruan, J. Mater. Sci. 30, 695–700 (2018)Google Scholar
  21. 21.
    X. Chen, X. Yan, X. Li, G. Liu, J. Sun, X. Li, H. Zhou, J. Alloys Compd. 762, 697–705 (2018)CrossRefGoogle Scholar
  22. 22.
    X. Wu, K.W. Kwok, F.L. Li, J. Alloys Compd. 580, 88–92 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Wang, L.H. Luo, Y.P. Huang, W.P. Li, J. Am. Ceram. Soc. 99(5), 1625–1630 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Sang, Z. Yuan, L. Zheng, E. Sun, R. Zhang, J. Wang, R. Wang, B. Yang, M. Liu, Opt. Mater. 45, 104–108 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Lv, J. Wu, J. Zhu, D. Xiao, Phys. Chem. Chem. Phys. 20(30), 20149–20159 (2018)CrossRefGoogle Scholar
  26. 26.
    Q. Chai, X. Zhao, X. Chao, Z. Yang, RSC Adv. 7(45), 28428–28437 (2017)CrossRefGoogle Scholar
  27. 27.
    B. Malic, J. Bernard, A. Bencan, M. Kosec, J. Eur. Ceram. Soc. 28(6), 1191–1196 (2008)CrossRefGoogle Scholar
  28. 28.
    K. Lily, K. Kumari, K.L. Prasad, Yadav. J. Mater. Sci. 42(15), 6252–6259 (2007)CrossRefGoogle Scholar
  29. 29.
    S. Hajra, S. Sahoo, R. Das, R.N.P. Choudhary, J. Alloys Compd. 750, 507–514 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Xing, J. Zhang, X. Jia, H. Pan, J. He, J. Wang, W. Bai, F. Wen, Ceram. Int. 44(8), 10006–10009 (2018)CrossRefGoogle Scholar
  31. 31.
    S. Nasri, M. Megdiche, M. Gargouri, Ceram. Int. 42(1), 943–951 (2016)CrossRefGoogle Scholar
  32. 32.
    X.-P. Jiang, X.-A. Jiang, C. Chen, N. Tu, Y.-J. Chen, B.-C. Zhang, J. Phys. D 49(12), 125101 (2016)CrossRefGoogle Scholar
  33. 33.
    X. Sun, J. Deng, L. Liu, S. Liu, D. Shi, L. Fang, B. Elouadi, Mater. Res. Bull. 73, 437–445 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiuli Chen
    • 1
    Email author
  • Jie Sun
    • 1
  • Xu Li
    • 1
  • Xiao Yan
    • 1
  • Xiaoxia Li
    • 1
  • Junpeng Shi
    • 1
  • Congcong Sun
    • 1
  • Feihong Pang
    • 1
  • Huanfu Zhou
    • 1
  1. 1.Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Key Laboratory of Nonferrous Materials and New Processing Technology, Ministry of Education, School of Materials Science and EngineeringGuilin University of TechnologyGuilinChina

Personalised recommendations