Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16384–16394 | Cite as

Synthesis and luminescence properties of single-phase Ca2P2O7:Eu2+, Eu3+ phosphor with tunable red/blue emission

  • Chao Dong
  • Yanjie ZhangEmail author
  • Jianjun Duan
  • Jingjie YuEmail author
Article
  • 66 Downloads

Abstract

A series of Eu2+ and Eu3+ coexisting Ca2P2O7 phosphors with tunable red/blue (R/B) emission have been successfully synthesized by a two-step method. Phase composition, luminescence properties and surface states are investigated by the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL) emission spectra, fluorescence quantum efficiency, fluorescent lifetime and X-ray photoelectron spectroscopy (XPS). It can be concluded from XRD and FTIR results that pure Ca2P2O7 phase can be obtained at 900 °C and Ca3(PO4)2 impurity phase occurs at an increasing preparation temperature (1100 °C). The XRD results confirm that the Eu2+or Eu3+ doped samples all exhibit pure tetragonal Ca2P2O7 crystal with space group P41. Under excitation of 330 nm, Eu2+ singly-doped Ca2P2O7 phosphors showed a broad blue emission band at 422 nm, while the Eu3+ single-doped samples emitted a strong orange-red light with wavelength of 591, 597 and 618 nm excited by 395 nm. In particular, oxygen vacancies in pure Ca2P2O7 crystal are found due to the strong PL emission at 420 nm. Furthermore, Eu2+/Eu3+ co-doped Ca2P2O7 phosphors prepared by this two-step synthesis show the blue emission at 422 nm (Eu2+ ions) and the orange-red emission (Eu2+ ions) at 591 nm, 597 nm and 618 nm under near-ultraviolet (NUV) excitation of 380 nm. It was detected that the quantum efficiency of the Ca1.88P2O7:0.12Eu phosphor was 37.7%. The tunable R/B emission ratio from 0.13 to 1.56 can be achieved by controlling the recalcined temperature in the second step when excited by 380 nm. The XPS demonstrate the existence of Eu3+ ions on the surface of Eu2+/Eu3+ co-doped Ca2P2O7 phosphors. Under NUV excitation in the range from 350 to 400 nm, the optimum Commission International de I’Eclairage (CIE) coordinate of Ca2P2O7:0.12Eu2+/Eu3+ phosphors is (0.3648, 0.215), which can be potentially used as an emitting source to meet the needs of illumination devices.

Notes

Acknowledgements

This research is financially supported by the Natural Science Foundation of Liaoning Province (20170540065 and 20170540074), the General Project of Liaoning Provincial Education Department (2016J057) and the Start-up Funding for Doctoral Researchers of Dalian Polytechnic University (61020726).

References

  1. 1.
    R. Cao, H. Xiao, F. Zhang, J. Mater. Sci. Mater. Electron. 30, 2327–2333 (2019)CrossRefGoogle Scholar
  2. 2.
    R. Cao, L. Su, X. Cheng, J. Mater. Sci. Mater. Electron. 30(8), 7808–7814 (2019)CrossRefGoogle Scholar
  3. 3.
    J. Zhong, D. Chen, Y. Peng, J. Alloys Compd. 763, 34–48 (2018)CrossRefGoogle Scholar
  4. 4.
    D. Chen, M. Xu, S. Liu, Sens. Actuators B 246, 756–760 (2017)CrossRefGoogle Scholar
  5. 5.
    S.D. Meetei, S.D. Singh, J. Alloy Compd. 587, 143–147 (2014)CrossRefGoogle Scholar
  6. 6.
    Z. Zhou, N. Zhou, X. Lu, RSC Adv. 6(80), 1–16 (2016)CrossRefGoogle Scholar
  7. 7.
    R.J. Xie, N. Hirosaki, M. Mitomo, J. Phys. Chem. B 109(19), 9490–9494 (2005)CrossRefGoogle Scholar
  8. 8.
    Y.C. Wu, D.Y. Wang, T.M. Chen, ACS Appl. Mater. Interfaces 3(8), 3195–3199 (2011)CrossRefGoogle Scholar
  9. 9.
    N. Guo, Y. Huang, M. Yang, Phys. Chem. Chem. Phys. 13(33), 15077–15082 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Zheng, Q. Cheng, J. Wu, Mater. Res. Bull. 73, 38–47 (2015)CrossRefGoogle Scholar
  11. 11.
    C. Li, H. Zheng, H. Wei, Dalton Trans. 47(19), 6860–6867 (2018)CrossRefGoogle Scholar
  12. 12.
    J. Zhao, X. Sun, Z. Wang, Chem. Phys. Lett. 691, 68–72 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.K. Kim, S. Choi, H.K. Jung, J. Lumin. 130, 60–64 (2010)CrossRefGoogle Scholar
  14. 14.
    Z. Hao, J. Zhang, X. Zhang, J. Lumin. 128, 941–944 (2008)CrossRefGoogle Scholar
  15. 15.
    Z.W. Yu, X.Y. Sun, Z.Q. Wang, J. Lumin. 197, 164–168 (2018)CrossRefGoogle Scholar
  16. 16.
    Y. Hou, C. Chen, L. Yao, Chin. J. Chem. Phys. 20(1), 99–102 (2007)CrossRefGoogle Scholar
  17. 17.
    W. Lü, Z. Hao, X. Zhang, Y. Luo, X. Wang, Adv. Inorg. Chem. 50(16), 7846–7851 (2011)CrossRefGoogle Scholar
  18. 18.
    W.R. Liu, C.H. Huang, C.W. Yeh, RSC Adv. 3(23), 9023–9028 (2013)CrossRefGoogle Scholar
  19. 19.
    G. Annadurai, S.M.M. Kennedy, V. Sivakumar, Luminescence 33(3), 521–527 (2018)CrossRefGoogle Scholar
  20. 20.
    K.N. Shinde, S.J. Dhoble, A. Kumar, J. Lumin. 131(5), 931–937 (2011)CrossRefGoogle Scholar
  21. 21.
    J.C. Zhang, Y.Z. Long, H.D. Zhang, J. Mater. Chem. C 2, 312–318 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Liu, K. Liang, Z.C. Wu, Ceram. Int. 40(6), 8827–8831 (2014)CrossRefGoogle Scholar
  23. 23.
    Z. Pei, Q. Zeng, Q. Su, J. Solid State Chem. 145(1), 212–215 (1999)CrossRefGoogle Scholar
  24. 24.
    A. Baran, J. Barzowska, M. Grinberg, Opt. Mater. 35(12), 2107–2114 (2013)CrossRefGoogle Scholar
  25. 25.
    S.S. Yao, L.H. Xue, Y.Y. Li, Appl. Phys. B 96(1), 39–42 (2009)CrossRefGoogle Scholar
  26. 26.
    W.B. Dai, J. Mater. Chem. C 2, 3951–3959 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Peng, Z. Pei, G. Hong, Chem. Phys. Lett. 371, 1–6 (2003)CrossRefGoogle Scholar
  28. 28.
    B. Liu, Y. Wang, J. Zhou, F. Zhang, J. Appl. Phys. 106(5), 053102 (2009)CrossRefGoogle Scholar
  29. 29.
    R.L. Kohale, K.N. Shinde, K. Park, J. Nanosci. Nanotechnol. 14(8), 5976–5978 (2014)CrossRefGoogle Scholar
  30. 30.
    C.Q. Ming, Y. Greish, J. Mater. Sci. Mater. Med. 15(11), 1227–1235 (2004)CrossRefGoogle Scholar
  31. 31.
    O. Kaygili, C. Tatar, F. Yakuphanoglu, Ceram. Int. 38(7), 5713–5722 (2012)CrossRefGoogle Scholar
  32. 32.
    Y.W. Zhang, J.Y. Feng, Q.L. Sai, Integr. Ferroelectr. 154, 128–132 (2014)CrossRefGoogle Scholar
  33. 33.
    P.K. Pathak, Optik 127, 1272–1277 (2016)CrossRefGoogle Scholar
  34. 34.
    S.H. Yang, C.M. Lin, J. Alloy Compd. 684, 461–465 (2016)CrossRefGoogle Scholar
  35. 35.
    E. Cortes-Adasme, R. Castillo, J. Alloy Compd. 771, 162–168 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Institute of PhotonicsDalian Polytechnic UniversityDalianChina

Personalised recommendations