Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16359–16368 | Cite as

A study on fluoroelastomer/MWCNTs-COOH dielectric composite with high temperature and acid resistance

  • Guangyao Yang
  • Lifen TongEmail author
  • Yong You
  • Xiting Lei
  • Xiaobo LiuEmail author
Article
  • 18 Downloads

Abstract

A novel dielectric material of fluoroelastomer/MWCNTs-COOH (acidified MWCNTs) composite that can be applied in the harsh conditions was prepared by a simple solution blending method. Thermogravimetic analysis was applied to evaluate the thermal stability of the fluoroelastomer/MWCNTs-COOH composite. It shows that the thermal decomposition temperature is greater than 400 °C. Besides, the thermal decomposition mechanism and service life of the composites were determined by various thermal decomposition kinetics methods. The results show that the thermal decomposition mechanism of the composite belongs to the first-order reaction, and the limit temperature of 2 years of use is 227.8 °C. Due to the excellent electrical properties of MWCNTs, the dielectric constant of the composite increases by 28.2% with only 1.5 wt% fillers loading. Most importantly, the composite shows excellent corrosion resistance. There are few changes in dielectric properties of the composite after soaked in acid for 9 days. The dielectric constant does not change more than 1.5, and the dielectric loss is basically unchanged. Therefore, such composite is a good candidate for high performance dielectric material used at elevated temperature or acid environment.

Notes

Acknowledgement

The financial supports from the National Natural Science Foundation of China (51603029 and 51773028), China Postdoctoral Science Foundation (2017M623001) and National Postdoctoral Program for Innovative Talents (BX201700044) are gratefully acknowledged.

References

  1. 1.
    X. Xue, H. Yan, Y. Fu, Solid State Ionics 335, 1 (2019)CrossRefGoogle Scholar
  2. 2.
    H. Yan, Y. Fu, X. Wu, X. Xue, C. Li, L. Zhang, Solid State Ionics 336, 95 (2019)CrossRefGoogle Scholar
  3. 3.
    H. Ahmed, H. Qassim, J. Mater. Sci. 13, 11598 (2018)Google Scholar
  4. 4.
    Y. Huang, X. He, L. Gao, Y. Wang, C. Liu, P. Liu, J. Mater. Sci. 28, 9495 (2017)Google Scholar
  5. 5.
    A. Feng, G. Wu, Y. Wang, C. Pan, J. Nanosci. Nanotechnol. 17, 3859 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Araby, Q. Meng, L. Zhang, H. Kang, P. Majewski, Y. Tang, J. Ma, Polymer 55, 201 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Li, J. Ma, S. Chen, Y. Huang, J. He, Mater. Sci. Eng. C 89, 25 (2018)CrossRefGoogle Scholar
  8. 8.
    H. Hu, L. Zhao, J. Liu, Y. Liu, J. Cheng, J. Luo, Y. Liang, Y. Tao, X. Wang, J. Zhao, Polymer 53, 3378 (2012)CrossRefGoogle Scholar
  9. 9.
    N. Ning, D. Cheng, J. Yang, L. Liu, M. Tian, Y. Wu, W. Wang, L. Zhang, Y. Lu, Compos. Sci. Technol. 142, 214 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Gao, J. Guo, J. Xiong, A.T. Smith, L. Sun, Compos. Sci. Technol. 162, 49 (2018)CrossRefGoogle Scholar
  11. 11.
    J. Macutkevic, D. Seliuta, G. Valusis, J. Banys, P. Kuzhir, S. Maksimenko, V. Kuznetsov, S. Moseenkov, A. Usolseva, I. Mazov, A. Ischenko, P. Lambin, Phys. Status Solidi C (2009).  https://doi.org/10.1002/pssc.200982531 Google Scholar
  12. 12.
    S. Bhattacharyya, C. Sinturel, O. Bahloul, M.L. Saboungi, S. Thomas, J.P. Salvetat, Carbon 46, 1037 (2008)CrossRefGoogle Scholar
  13. 13.
    B.S. Yim, J.M. Kim, J. Mater. Sci. 27, 9159 (2016)Google Scholar
  14. 14.
    J.Z. Liang, T.Y. Zhou, S.Y. Zou, Polym. Test. 55, 184 (2016)CrossRefGoogle Scholar
  15. 15.
    X. Meng, X. Liu, C. Cong, Q. Zhou, Polym. Compos. 36, 257 (2015)CrossRefGoogle Scholar
  16. 16.
    Y.S. Lee, S.H. Park, J.C. Lee, K. Ha, Korean J. Chem. Eng. 33, 1095 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Khajehpour, S. Sadeghi, A.Z. Yazdi, U. Sundararaj, Polymer 55, 6293 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Zhou, Z. Zang, J. Wei, J. Zheng, J. Hao, F. Ling, X. Tang, L. Fang, M. Zhou, Nano Energy. 50, 118 (2018)CrossRefGoogle Scholar
  19. 19.
    J. Heidarian, A. Hassan, Polym. Compos. 37, 3341 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Heidarian, A. Hassan, N.M.M.A. Rahman, Polim 25, 392 (2015)CrossRefGoogle Scholar
  21. 21.
    R. Wei, L. Tu, Y. You, C. Zhan, Y. Wang, X. Liu, Polymer 161, 162 (2019)CrossRefGoogle Scholar
  22. 22.
    Y. You, C. Zhan, L. Tu, Y. Wang, W. Hu, R. Wei, X. Liu, Int. J. Polym. Sci (2018).  https://doi.org/10.1155/2018/5161908 Google Scholar
  23. 23.
    K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, D.H. Fairbrother, Carbon 49, 24 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Ma, Y. Yang, D. Liao, P. Lyu, J. Zhang, J. Liang, L. Zhang, Appl. Organomet. Chem. 33, e4708 (2019)CrossRefGoogle Scholar
  25. 25.
    B. Scheibe, E. Borowiak-Palen, R.J. Kalenczuk, Mater. Charact. 61, 185 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Yu, Z. Dang, J. Zhai, IEEE Int. Conf. Prop. Appl. Dielectr. Mater. (2009).  https://doi.org/10.1109/ICPADM.2009.5252519 Google Scholar
  27. 27.
    L. Núñez, F. Fraga, M.R. Núñez, M. Villanueva, Polymer 41, 4635 (2000)CrossRefGoogle Scholar
  28. 28.
    A.W. Coats, J.P. Redfern, Nature 201, 68 (1964)CrossRefGoogle Scholar
  29. 29.
    C.-Y. Ou, C.-H. Zhang, S.-D. Li, L. Yang, J.-J. Dong, X.-L. Mo, M.-T. Zeng, Carbohydr. Polym. 82, 1284 (2010)CrossRefGoogle Scholar
  30. 30.
    C. Danvirutai, P. Noisong, S. Youngme, J. Thermal Anal. Calorim. 100, 117 (2010)CrossRefGoogle Scholar
  31. 31.
    Y. Li, Y. Cheng, Y. Ye, R. Shen, J. Therm. Anal. Calorim. (2010).  https://doi.org/10.1007/s10973-009-0612-4 Google Scholar
  32. 32.
    A.H. Rony, L. Kong, W. Lu, M. Dejam, H. Adidharma, K.A.M. Gasem, Y. Zheng, U. Norton, M. Fan, Bioresour. Technol. 284, 466 (2019)CrossRefGoogle Scholar
  33. 33.
    V.S. de Carvalho, K. Tannous, Thermochim. Acta 657, 56 (2017)CrossRefGoogle Scholar
  34. 34.
    P. Das, P. Tiwari, Thermochim. Acta 654, 191 (2017)CrossRefGoogle Scholar
  35. 35.
    Y. Elmay, M. Jeguirim, G. Trouvé, R. Said, Energy Sour. Part A 38, 1117 (2016)CrossRefGoogle Scholar
  36. 36.
    W. Dakin, Thomas. Trans. Am. Inst. Electr. Eng. 67, 113 (1948)CrossRefGoogle Scholar
  37. 37.
    D. Li, M. Liao, J. Fluor. Chem. 201, 55 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Li, Y. Lu, Yu. Liu, Y. Li, X. Zhang, S. Qi, Polym.-Plast. Technol. Eng. 53, 46 (2014)CrossRefGoogle Scholar
  39. 39.
    W.W. Schmiegel, Angew. Makromol. Chem. 77, 39 (1979)CrossRefGoogle Scholar
  40. 40.
    Z. Jia, B. Wang, A. Feng, J. Liu, M. Zhang, Z. Huang, G. Wu, J. Alloys Compd. 799, 216 (2019)CrossRefGoogle Scholar
  41. 41.
    S.E. Lee, S.J. Sang, H. Park, S.H. Park, I. Han, S. Mizusaki, Compos. Sci. Technol. 143, 98 (2017)CrossRefGoogle Scholar
  42. 42.
    A. Das, K.W. Stöckelhuber, R. Jurk, M. Saphiannikova, J. Fritzsche, H. Lorenz, M. Klüppel, G. Heinrich, Polymer 49, 5276 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and EnergyResearch Branch of Advanced Functional Materials, University of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations