Advertisement

Electron transport and magnetotransport in graphene films grown on iron thin film catalyst

  • O. V. KononenkoEmail author
  • A. V. Zotov
  • V. T. Volkov
  • V. I. Levashov
  • V. A. Tulin
  • V. N. Matveev
Article
  • 9 Downloads

Abstract

Graphene films were grown by the low-pressure chemical vapor deposition with a single injection of acetylene on an iron film catalyst deposited on oxidized silicon substrate. After treatment of the graphene on the iron film with aqueous solution of iron nitrate the structures consisting of quasi-suspended graphene on reaction products of the iron film with iron nitrate were obtained. The electron transport and magnetotransport properties of the films were investigated. The films have a low resistance of 80 Ohm sq−1 and a high sheet carrier density (8 × 1013 cm−2 at room temperature). At temperatures less than 200 K, the dependence of the Hall resistance on the magnetic field is like the abnormal Hall effect. Large positive linear magnetoresistance at a room temperature (60–100%) was observed in the films in a field of 0.6 T, which is attractive for creating magnetoresistive sensors. It was found that the critical magnetic field at which the MR becomes linear is very small (116–650 Oe) and linearly dependent on a temperature. The MR is proportional to the average mobility 〈µ〉. At low temperatures, the magnetoresistance increases with increasing temperature. At higher temperatures the MR decreases with increasing temperature.

Notes

Acknowledgements

This work was supported by the State task 075-00475-19-00 IMT RAS.

References

  1. 1.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 22, 666 (2004)CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)CrossRefGoogle Scholar
  3. 3.
    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)CrossRefGoogle Scholar
  4. 4.
    D.K. Efelov, P. Kim, Phys. Rev. Lett. 105, 256805 (2010)CrossRefGoogle Scholar
  5. 5.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)CrossRefGoogle Scholar
  6. 6.
    X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Bae, H. Kim, Y. Lee, X.F. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, S. Iijima, Nat. Nanotechnol. 5, 574 (2010)CrossRefGoogle Scholar
  8. 8.
    V.L. Nguyen, B.G. Shin, D.L. Duong, S.T. Kim, D. Perello, Y.J. Lim, Q.H. Yuan, F. Ding, H.Y. Jeong, H.S. Shin, S.M. Lee, S.H. Chae, Q.A. Vu, S.H. Lee, Y.H. Lee, Adv. Mater. 27, 1376 (2015)CrossRefGoogle Scholar
  9. 9.
    H.J. Shin, W.M. Choi, S.M. Yoon, G.H. Han, Y.S. Woo, E.S. Kim, S.J. Chae, X.S. Li, A. Benayad, D.D. Loc, F. Gunes, Y.H. Lee, J.Y. Choi, Adv. Mater. 23, 4392 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Kwak, J.H. Chu, J.K. Choi, S.D. Park, H. Go, S.Y. Kim, K. Park, S.D. Kim, Y.W. Kim, E. Yoon, S. Kodambaka, S.Y. Kwon, Nat. Commun. 3, 645 (2012)CrossRefGoogle Scholar
  11. 11.
    Q.Q. Zhuo, Q. Wang, Y.P. Zhang, D. Zhang, Q.L. Li, C.H. Gao, Y.Q. Sun, L. Ding, Q.J. Sun, S.D. Wang, J. Zhong, X.H. Sun, S.T. Lee, ACS Nano 9, 594 (2015)CrossRefGoogle Scholar
  12. 12.
    Z. Yan, Z.W. Peng, Z.Z. Sun, J. Yao, Y. Zhu, Z. Liu, P.M. Ajayan, J.M. Tour, ACS Nano 5, 8187 (2011)CrossRefGoogle Scholar
  13. 13.
    M.P. Levendorf, C.S. Ruiz-Vargas, S. Garg, J. Park, Nano Lett. 9, 4479 (2009)CrossRefGoogle Scholar
  14. 14.
    V.N. Matveev, V.I. Levashov, O.V. Kononenko, V.T. Volkov, Scr. Mater. 147, 37 (2018)CrossRefGoogle Scholar
  15. 15.
    Y.A. Kasumov, A. Shailos, I.I. Khodos, V.T. Volkov, V.I. Levashov, V.N. Matveev, S. Gueron, M. Kobylko, M. Kociak, H. Bouchiat, V. Agache, A.S. Rollier, L. Buchaillot, A.M. Bonnot, A.Y. Kasumov, Appl. Phys. A 88, 687 (2007)CrossRefGoogle Scholar
  16. 16.
    O.V. Kononenko, V.N. Matveev, D.P. Field, D.V. Matveev, S.I. Bozhko, D.V. Roshchupkin, E.E. Vdovin, A.N. Baranov, Nanosyst. Phys. Chem. Math. 5, 117 (2014)Google Scholar
  17. 17.
    E.J. Heller, Y. Yang, L. Kocia, W. Chen, S. Fang, M. Borunda, E. Kaxiras, ACS Nano 10, 2803 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A.M. Rao, M. Ishigami, ACS Nano 5, 1594 (2011)CrossRefGoogle Scholar
  19. 19.
    J. Kozlova, A. Niilisk, H. Alles, V. Sammelselg, Carbon 94, 160 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Niilisk, J. Kozlova, H. Alles, J. Aarik, V. Sammelselg, Carbon 98, 658 (2016)CrossRefGoogle Scholar
  21. 21.
    Y. Gogotsi, Nat. Nanotechnol. 13, 625 (2018)CrossRefGoogle Scholar
  22. 22.
    V. Ambegaokar, B.I. Halperin, J.S. Langer, Phys. Rev. B 4, 2612 (1971)CrossRefGoogle Scholar
  23. 23.
    H. Miyazaki, K. Tsukagoshi, A. Kanda, M. Otani, S. Okada, Nano Lett. 10, 3888 (2010)CrossRefGoogle Scholar
  24. 24.
    T.F. Chung, Y. Xu, Y.P. Chen, Phys. Rev. B 98, 035425 (2018)CrossRefGoogle Scholar
  25. 25.
    L. Berger, G. Bergmann, in The hall effect and its applications, ed. by C.L. Chien, C.R. Westgate (Plenum, New York, 1980), p. 55CrossRefGoogle Scholar
  26. 26.
    S.P. Gubin, Y.A. Koksharov, G.B. Khomutov, GYu. Yurkov, Russ. Chem. Rev. 74, 489 (2005)CrossRefGoogle Scholar
  27. 27.
    V.N. Nikiforov, A.E. Goldt, E.A. Gudilin, V.G. Sredin, V.Y. Irhin, Bull. Russ. Acad. Sci. Phys. 78, 1075 (2014)CrossRefGoogle Scholar
  28. 28.
    W. Wu, X.H. Xiao, S.F. Zhang, T.C. Peng, J. Zhou, F. Ren, C.Z. Jiang, Nanoscale Res. Lett. 5, 1474 (2010)CrossRefGoogle Scholar
  29. 29.
    M.U. Zulfiqar, M.U. Rahman, M. Usman, S.K. Hasanain, A. Ullah, I.W. Kim, J. Korean Phys. Soc. 65, 1925 (2014)CrossRefGoogle Scholar
  30. 30.
    E.M. Pugh, N. Rostoker, Rev. Mod. Phys. 25, 151 (1953)CrossRefGoogle Scholar
  31. 31.
    F.V. Tikhonenko, A.A. Kozikov, A.K. Savchenko, R.V. Gorbachev, Phys. Rev. Lett. 103, 226801 (2006)CrossRefGoogle Scholar
  32. 32.
    S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, L.A. Ponomarenko, D. Jiang, A.K. Geim, Phys. Rev. Lett. 97, 016801 (2006)CrossRefGoogle Scholar
  33. 33.
    Z.M. Liao, Y.B. Zhou, H.C. Wu, B.H. Han, D.P. Yu, EPL 94, 57004 (2011)CrossRefGoogle Scholar
  34. 34.
    H. Li, Y.J. Zeng, X.J. Hu, H.H. Zhang, S.C. Ruan, M.J. Van Bael, C. Van Haesendonck, Carbon 124, 193 (2017)CrossRefGoogle Scholar
  35. 35.
    M. Parish, P. Littlewood, Nature 426, 162 (2003)CrossRefGoogle Scholar
  36. 36.
    M. Parish, P. Littlewood, Phys. Rev. B 72, 094417 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesMoscow RegionRussia

Personalised recommendations