Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16347–16352 | Cite as

Electric-field-controlled frequency tunability enhancement by samarium light doping in PZT/Ni–Zn ferrite/PZT magnetoelectric composites

  • Lingzhi Cao
  • Dongyu Chen
  • Shengtao GengEmail author
  • Qingfang Zhang
  • Kang Li
  • Xinxin Hang
  • Bingfeng Ge
  • Jiahui Liu
  • Yu Ruan
  • Roshan Timilsina
  • Liying Jiang
  • Jitao ZhangEmail author
Article
  • 17 Downloads

Abstract

Electric-field-controlled resonance tuning in tri-layer magnetoelectric laminate consisting of Ni–Zn ferrites (with/without Sm-doped) and PZT plates has been performed and systemically characterized. By applying the DC voltage on PZT plate, modulus of the sample will change in ferrite which is caused by mediated pre-stress from PZT plate, resulting in a resonance shifting without a sacrifice of MEVC decay. For the purpose of tuning range improvement, light doping of samarium was employed in spinel nickel–zinc ferrites to modify frequency responses properties. Experimental results showed that a nearly linear variation of resonance frequency with applied voltage varied from 0 to 6 kV/cm was obtained. Consequently, the resonance frequency can be precisely controlled by the pre-stress generated from DC electric field. In addition, the tunability of resonance frequency exhibits an approximately 3.68 times enhancement by samarium doping in the Ni–Zn ferrites. The pathway for resonance frequency tunable realization by applied DC voltage provides an accurate tuning method for the tunable resonator, which can be deployed extensively in signal generators, phase shifters and other electronic devices.

Notes

Acknowledgements

This research was financially supported by National Natural Science Foundation of China (NSFC) (Grant No. 61973279), Technological Innovation Talents Program of Henan Province (Grant No. 184200510015) and Key Scientific Research Projects for Universities in Henan Province (Grant No. 18A535001), Graduate Technology Innovation Project of Zhengzhou University of Light Industry (Grant No. 2018002).

References

  1. 1.
    J. Ma, J.M. Hu, Z. Li, C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23, 1062 (2011)CrossRefGoogle Scholar
  2. 2.
    C.M. Leung, J.F. Li, D. Viehland, X. Zhuang, A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D 51, 263002 (2018)CrossRefGoogle Scholar
  3. 3.
    J.M. Hu, L.Q. Chen, C.W. Nan, Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28, 15 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Shankar, M. Kumar, V. Tuli, O.P. Thakur, M. Jayasimhadri, Energy storage and magnetoelectric coupling in ferroelectric-ferrite composites. J. Mater. Sci.: Mater. Electron. 29, 18352 (2018)Google Scholar
  5. 5.
    P.E. Rubavathi, L. Venkidu, M.V.G. Babu, R.V. Raman, B. Bagyalakshmi, S.M.A. Kader, K. Baskar, M. Muneeswaran, N.V. Giridharan, B. Sundarakannan, Structure, morphology and magnetodielectric investigations of BaTi1-xFexO3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 5706 (2019)Google Scholar
  6. 6.
    S. Dabas, P. Chaudhary, M. Kumar, S. Shankar, O.P. Thakur, Structural, microstructural and multiferroic properties of BiFeO3-CoFe2O4 composites. J. Mater. Sci.: Mater. Electron. 30, 2837 (2019)Google Scholar
  7. 7.
    R.N. Bhowmik, A.G. Lone, Electric field controlled magnetic exchange bias and magnetic state switching at room temperature in Ga-doped alpha-Fe2O3 oxide. J. Magn. Magn. Mater. 462, 105 (2018)CrossRefGoogle Scholar
  8. 8.
    J.T. Zhang, D.Y. Chen, D.A. Filippov, K. Li, Q.F. Zhang, L.Y. Jiang, W.W. Zhu, L.Z. Cao, G. Srinivasan, Bidirectional tunable ferrite-piezoelectric trilayer magnetoelectric inductors. Appl. Phys. Lett. 113, 113502 (2018)CrossRefGoogle Scholar
  9. 9.
    P.T. Xie, R.H. Fan, Z.D. Zhang, B.W. Li, M. Chen, Y. Liu, Tunable negative permittivity and permeability of yttrium iron garnet/polyaniline composites in radio frequency region. J. Mater. Sci.: Mater. Electron. 29, 6119 (2018)Google Scholar
  10. 10.
    X. Fang, N. Zhang, Z.L. Wang, Converse magnetoelectric effects on heterotype electrostrain-piezopermeability composites. Appl. Phys. Lett. 93, 102503 (2008)CrossRefGoogle Scholar
  11. 11.
    J. Lou, D. Reed, M. Liu, N.X. Sun, Electrostatically tunable magnetoelectric inductors with large inductance tunability. Appl. Phys. Lett. 94, 112508 (2009)CrossRefGoogle Scholar
  12. 12.
    S.K. Mandal, G. Sreenivasulu, V.M. Petrov, G. Srinivasan, Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett. 96, 192502 (2010)CrossRefGoogle Scholar
  13. 13.
    Y.K. Yan, L.W.D. Geng, L.J. Zhang, X.Y. Gao, S. Gollapudi, H.C. Song, S.X. Dong, M. Sanghadasa, K. Ngo, Y.U. Wang, S. Priya, Correlation between tunability and anisotropy in magnetoelectric voltage tunable inductor (VTI). Sci. Rep. 7, 044015 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Liu, O. Obi, Z.H. Cai, J. Lou, G.M. Yang, K.S. Ziemer, N.X. Sun, Electrical tuning of magnetism in Fe3O4/PZN-PT multiferroic heterostructures derived by reactive magnetron sputtering. J. Appl. Phys. 107, 073916 (2010)CrossRefGoogle Scholar
  15. 15.
    A. El-Ghazaly, J.T. Evans, N. Sato, N. Montross, H. Ohldag, R.M. White, S.X. Wang, Electrically tunable integrated thin-film magnetoelectric resonators. Adv. Mater. Technol. 2, 1700062 (2017)CrossRefGoogle Scholar
  16. 16.
    S. Tiwari, S. Vitta, Magnetoelectric and magnetodielectric coupling and microwave resonator characteristics of Ba0.5Sr0.5Nb2O6/CoCr0.4Fe1.6O4 multiferroic composite. Sci. Rep. 8, 11619 (2018)CrossRefGoogle Scholar
  17. 17.
    J.T. Zhang, W.W. Zhu, D.Y. Chen, H.W. Qu, P. Zhou, M. Popov, L.Y. Jiang, L.Z. Cao, G. Srinivasan, Magnetoelectric effects and power conversion efficiencies in gyrators with compositionally-graded ferrites and piezoelectrics. J. Magn. Magn. Mater. 473, 131 (2019)CrossRefGoogle Scholar
  18. 18.
    J. Kiser, P. Finkel, J.Q. Gao, C. Dolabdjian, J.F. Li, D. Viehland, Stress reconfigurable tunable magnetoelectric resonators as magnetic sensors. Appl. Phys. Lett. 102, 042909 (2013)CrossRefGoogle Scholar
  19. 19.
    J.Y.Y. Zhai, S.X. Dong, Z.P.P. Xing, J.Q. Gao, J.F.F. Li, D. Viehland, Tunable magnetoelectric resonance devices. J. Phys. D 42, 122001 (2009)CrossRefGoogle Scholar
  20. 20.
    J.R. Petrie, J. Fine, S. Mandal, G. Sreenivasulu, G. Srinivasan, A.S. Edelstein, Enhanced sensitivity of magnetoelectric sensors by tuning the resonant frequency. Appl. Phys. Lett. 99, 043504 (2011)CrossRefGoogle Scholar
  21. 21.
    P. Li, Y.M. Wen, X. Huang, J. Yang, J. Wen, J. Qiu, Y. Zhu, M. Yu, Wide-bandwidth high-sensitivity magnetoelectric effect of magnetostrictive/piezoelectric composites under adjustable bias voltage. Sens. Actuators A 201, 164 (2013)CrossRefGoogle Scholar
  22. 22.
    L.X. Bian, Y.M. Wen, P. Li, Field-dependent characteristics of equivalent circuit parameters and the magneto-impedance effect in Tb1-xDyxFe2-y/Pb(Zr, Ti)O3 laminate vibrator. Sens. Actuators A 236, 338 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Zhang, D. Chen, K. Li, D.A. Filippov, B. Ge, Q. Zhang, X. Hang, L. Cao, G. Srinivasan, Self-biased magnetoelectric gyrators in composite of samarium substituted nickel zinc ferrites and piezoelectric ceramics. AIP Adv. 9, 035137 (2019)CrossRefGoogle Scholar
  24. 24.
    G. Srinivasan, E.T. Rasmussen, R. Hayes, Magnetoelectric effects in ferrite-lead zirconate titanate layered composites: the influence of zinc substitution in ferrites. Phys. Rev. B 67, 014418 (2003)CrossRefGoogle Scholar
  25. 25.
    J.P. Zhou, Y. Yang, G.B. Zhang, J.H. Peng, P. Liu, Symmetric relationships between direct and converse magnetoelectric effects in laminate composites. Compos. Struct. 155, 107 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Su, X.L. Tang, H.W. Zhang, N.X. Sun, Voltage-impulse-induced nonvolatile tunable magnetoelectric inductor based on multiferroic bilayer structure. Appl. Phys. Express 9, 077301 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.Army Engineering University of PLAChongqingChina
  3. 3.Physics DepartmentOakland UniversityRochesterUSA

Personalised recommendations