Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16337–16346 | Cite as

Magnetic, dielectric and magneto-dielectric properties of Aurivillius phase Bi4.25Nd0.75FeTi2(NbCo)0.5O15 ceramics

  • Xuzhong Zuo
  • Enjie HeEmail author
  • Zhenzhen Hui
  • Jin Bai
  • Jie Yang
  • Xuebin Zhu
  • Jianming Dai
Article
  • 63 Downloads

Abstract

The structural, magnetic, dielectric and magneto-dielectric properties of Aurivillius phase Bi4.25Nd0.75FeTi2(NbCo)0.5O15 (BNFTNCO) ceramics were investigated. X-ray diffraction and Raman results suggest that Nd ions can be effectively incorporated into Bi sites. A typical four-layered Aurivillius structure is confirmed by high resolution transmission electron microscope. The double remanent magnetization 2Mr at 300 K is determined to be 0.88 emu/g, which is one order of magnitude larger than that of Bi5Fe0.5Co0.5Ti3O15 ceramic. The sample undergoes the ferromagnetic and ferroelectric transition at 642 K and 1094 K, respectively. The ferromagnetic Curie temperature is about 200 K higher than that of Bi4.2Nd0.8Fe0.5Co0.5Ti3O15 ceramic. The dielectric relaxation around 300 K with activation energy of 0.435 eV is associate with the hopping process of oxygen vacancies, while the high-temperature dielectric relaxation with a rather large activation energy of Ea= 2.43 eV may be related to the viscous motion of domain walls. More importantly, the intrinsic magneto-electric coupling effect with the magneto-dielectric constant of − 0.57% can be achieved at 300 K and 1 kHz. In addition, the optical band gap Eg of BNFTNCO is 2.50 eV.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51702002), the Major Foundation of Education Department of Anhui Province (Grant Nos. KJ2018A0529 and KJ2018A0526), the Natural Science Foundation of Anhui Province (Grant No. 1808085MA09) and the Talent Project of Anhui Science and Technology University (Grant No. DQYJ201703).

References

  1. 1.
    M.J. Pitcher, P. Mandal, M.S. Dyer, J. Alaria, P. Borisov, H.J. Niu, J.B. Claridge, M.J. Rosseinsky, Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science 347, 420 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Matsubara, S. Manz, M. Mochizuki, T. Kubacka, A. Iyama, N. Aliouane, T. Kimura, S.L. Johnson, D. Meier, M. Fiebig, Magnetoelectric domain control in multiferroic TbMnO3. Science 348, 1112 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016)CrossRefGoogle Scholar
  4. 4.
    S.J. Sun, Y.H. Ling, R.R. Peng, M. Liu, X.Y. Mao, X.B. Chen, R.J. Knize, Y.L. Lu, Synthesis of Ni-substituted Bi7Fe3Ti3O21 ceramics and their superior room temperature multiferroic properties. RSC Adv. 3, 18567 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Faraz, J. Ricote, R. Jimenez, T. Maity, M. Schmidt, N. Deepak, S. Roy, M.E. Pemble, L. Keeney, Exploring ferroelectric and magnetic properties of Tb-substituted m = 5 layered Aurivillius phase thin films. J. Appl. Phys. 123, 124101 (2018)CrossRefGoogle Scholar
  6. 6.
    X.Y. Mao, W. Wang, X.B. Chen, Y.L. Lu, Multiferroic properties of layer-structured Bi5Fe0.5Co0.5Ti3O15 ceramics. Appl. Phys. Lett. 95, 082901 (2009)CrossRefGoogle Scholar
  7. 7.
    X.Y. Mao, H. Sun, W. Wang, X.B. Chen, Y.L. Lu, Ferromagnetic, ferroelectric properties, and magneto-dielectric effect of Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramics. Appl. Phys. Lett. 102, 072904 (2013)CrossRefGoogle Scholar
  8. 8.
    Y.Y. Wu, T.S. Yao, Y.X. Lu, B.W. Zou, X.Y. Mao, F.Z. Huang, H. Sun, X.B. Chen, Magnetic, dielectric, and magnetodielectric properties of Bi-layered perovskite Bi4.25Gd0.75Fe0.5Co0.5Ti3O15. J. Mater. Sci. 52, 7360–7368 (2017)CrossRefGoogle Scholar
  9. 9.
    C.B. Long, Q. Chang, Y. Wu, W.F. He, Y.H. Li, H.Q. Fan, New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5-xTi4O15: crystal structures, electrical properties and conduction behaviors. J. Mater. Chem. C 3, 8852 (2015)CrossRefGoogle Scholar
  10. 10.
    Z.W. Lei, Y. Huang, M. Liu, W. Ge, Y.H. Ling, R.R. Peng, X.Y. Mao, X.B. Chen, Y.L. Lu, Ferroelectric and ferromagnetic properties of Bi7−xLaxFe1.5Co1.5Ti3O21 ceramics prepared by the hot-press method. J. Alloys Compd. 600, 168–171 (2014)CrossRefGoogle Scholar
  11. 11.
    B. Yuan, J. Yang, J. Chen, X.Z. Zuo, L.H. Yin, X.W. Tang, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. Sun, Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3−2xNbxCoxO18 (0 ≤ x ≤ 0.4). Appl. Phys. Lett. 104, 062413 (2014)CrossRefGoogle Scholar
  12. 12.
    J. Yang, L.H. Yin, Z. Liu, X.B. Zhu, W.H. Song, J.M. Dai, Z.R. Yang, Y.P. Sun, Magnetic and dielectric properties of Aurivillius phase Bi6Fe2Ti3O18 and the doped compounds. Appl. Phys. Lett. 101, 012402 (2012)CrossRefGoogle Scholar
  13. 13.
    X.Z. Zuo, J. Yang, D.P. Song, B. Yuan, X.W. Tang, K.J. Zhang, X.B. Zhu, W.H. Song, J.M. Dai, Y.P. Sun, Magnetic, dielectric, and magneto-dielectric properties of rare-earth-substituted Aurivillius phase Bi6Fe1.4Co0.6Ti3O18. J. Appl. Phys. 116, 154102 (2014)CrossRefGoogle Scholar
  14. 14.
    X.Z. Zuo, S.J. Zhu, J. Bai, E.J. He, Z.Z. Hui, P. Zhang, D.P. Song, W.H. Song, J. Yang, X.B. Zhu, J.M. Dai, Enhanced multiferroicity and narrow band gap in B-site Co-doped Aurivillius Bi5FeTi3O15. Ceram. Int. 45, 137–143 (2019)CrossRefGoogle Scholar
  15. 15.
    X.W. Dong, K.F. Wang, J.G. Wan, J.S. Zhu, J.M. Liu, Magnetocapacitance of polycrystalline Bi5Ti3FeO15 prepared by sol–gel method. J. Appl. Phys. 103, 094101 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Sun, X. Lu, J. Su, T. Xu, C. Ju, F. Huang, J. Zhu, Multiferroic behaviour and the magneto-dielectric effect in Bi5FeTi3O15 thin films. J. Phys. D 45, 385001 (2012)CrossRefGoogle Scholar
  17. 17.
    H.Y. Zhao, H. Kimura, Z.X. Cheng, M. Osada, J.L. Wang, X.L. Wang, S.X. Dou, Y. Liu, J.D. Yu, T. Matsumoto, T. Tohei, N. Shibata, Y. Ikuhara, Large magnetoelectric coupling in magnetically short-range ordered Bi5Ti3FeO15 film. Sci. Rep. 4, 5255 (2014)CrossRefGoogle Scholar
  18. 18.
    X.Q. Chen, Y. Xue, Z.W. Lu, J. Xiao, J. Yao, Z.W. Kang, P. Su, F.J. Yang, X.B. Zeng, H.Z. Sun, Magnetodielectric properties of Bi4NdTi3Fe0.7Co0.3O15 multiferroic system. J. Alloys Compd. 622, 288–291 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Liu, W. Bai, J. Yang, W.F. Xu, Y.Y. Zhang, T. Lin, X.J. Meng, C.G. Duan, X.D. Tang, J.H. Chu, The Cr-substitution concentration dependence of the structural, electric and magnetic behaviors for Aurivillius Bi5Ti3FeO15 multiferroic ceramics. J. Appl. Phys. 114, 234101 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Huang, S.J. Sun, G.P. Wang, J.L. Wang, R.R. Peng, Y.L. Lu, Yttrium-modified Bi7Fe1.5Co1.5Ti3O21 ceramics with improved room temperature multiferroic properties. RSC Adv. 4, 29264–29272 (2014)CrossRefGoogle Scholar
  21. 21.
    P. Nayak, T. Badapanda, S. Panigrahi, Thermal stability and improved electrical properties in Sr1-xGd2x/3Bi4Ti4O15 ceramics. Mater. Lett. 204, 120–124 (2017)CrossRefGoogle Scholar
  22. 22.
    H.P. Ning, H.X. Yan, Z.P. Gao, X.Y. Wei, M.J. Reece, Effect of donor dopants cerium and tungsten on the dielectric and electrical properties of high Curie point ferroelectric strontium niobate. Ceram. Int. 39, 7669–7675 (2013)CrossRefGoogle Scholar
  23. 23.
    M.D.C.R. Aranda, Á.G.R. Vázquez, U.S. Kuri, M.E. Mendoza, H.R.N. Contreras, Raman effect in multiferroic Bi5Fe1+xTi3−xO15 solid solutions: a temperature study. J. Appl. Phys. 123, 084101 (2018)CrossRefGoogle Scholar
  24. 24.
    A.L.C. Pereira, G.J.P. Berrocal, S.G. Marchetti, A.A. Alexilda, O. de Souza, M.C. Rangel, A comparison between the precipitation and impregnation methods for water gas shift catalysts. J. Mol. Catal. A 281, 66–72 (2008)CrossRefGoogle Scholar
  25. 25.
    B.J. Tan, K.J. Klabunde, P.M.A. Sherwood, XPS studies of solvated metal atom dispersed (SMAD) catalysts. Evidence for layered cobalt–manganese particles on alumina and silica. J. Am. Chem. Soc. 113, 855 (1991)CrossRefGoogle Scholar
  26. 26.
    K. Wandelt, Photoemission studies of adsorbed oxygen and oxide layers. Surf. Sci. Rep. 2, 1–121 (1982)CrossRefGoogle Scholar
  27. 27.
    J. Schwarzkopf, R. Dirsyte, A. Devi, A. Kwasniewski, M. Schmidbauer, G. Wagner, M. Michling, D. Schmeisser, R. Fornari, Influence of Na on the structure of Bi4Ti3O12 films deposited by liquid-delivery spin MOCVD. Thin Solid Films 519, 5754–5759 (2011)CrossRefGoogle Scholar
  28. 28.
    J. Yang, L.H. Yin, D.F. Shao, X.B. Zhu, J.M. Dai, Y.P. Sun, Magnetic and dielectric properties of Aurivillius phase Bi4.2Nd0.8Ti3Fe0.5Co0.5O15. Europhys. Lett. 96, 67006 (2011)CrossRefGoogle Scholar
  29. 29.
    A. Punnoose, J. Hays, A. Thurber, M.H. Engelhard, R.K. Kukkadapu, C. Wang, V. Shutthanandan, S. Thevuthasan, Development of high-temperature ferromagnetism in SnO2 and paramagnetism in SnO by Fe doping. Phys. Rev. B 72, 054402 (2005)CrossRefGoogle Scholar
  30. 30.
    X.Z. Zuo, M.L. Zhang, E.J. He, J. Yang, X.B. Zhu, J.M. Dai, Multiferroic property, dielectric response, and scaling behavior in Aurivillius Bi4.25Gd0.75Fe0.5Co0.5Ti3O15 ceramic. J. Alloys Compd. 695, 2556–2562 (2017)CrossRefGoogle Scholar
  31. 31.
    X.Z. Zuo, M.L. Zhang, E.J. He, B.G. Guan, Y.F. Qin, J. Yang, X.B. Zhu, J.M. Dai, Structural, magnetic, and dielectric properties of W/Cr co-substituted Aurivillius Bi5FeTi3O15. J. Alloys Compd. 726, 1040–1046 (2017)CrossRefGoogle Scholar
  32. 32.
    J.F. Scott, M. Dawber, Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl. Phys. Lett. 76, 3801 (2000)CrossRefGoogle Scholar
  33. 33.
    W.P. Lu, X.Y. Mao, X.B. Chen, Dielectric loss study of oxygen vacancies and domain walls in Sr2Bi4−x/3Ti5−xVxO18 ceramics. J. Appl. Phys. 95, 1973 (2004)CrossRefGoogle Scholar
  34. 34.
    B. Jimenez, R. Jiménez, A. Castro, P. Millán, L. Pardo, Dielectric and mechanoelastic relaxations due to point defects in layered bismuth titanate ceramics. J. Phys. 13, 7315–7326 (2001)Google Scholar
  35. 35.
    C. Wang, Q.F. Fang, Y. Shi, Z.G. Zhu, Internal friction study on oxygen vacancies and domain walls in Pb(Zr, Ti)O3 ceramics. Mater. Res. Bull. 36, 2657–2665 (2001)CrossRefGoogle Scholar
  36. 36.
    C.H. Wang, Z.F. Liu, L. Yu, Z.M. Tian, S.L. Yuan, Structural, magnetic and dielectric properties of Bi5-xLaxTi3Co0.5Fe0.5O15 ceramics. Mater. Sci. Eng. B 176, 1243–1246 (2011)CrossRefGoogle Scholar
  37. 37.
    T. Goto, Y. Noguchi, M. Soga, M. Miyayama, Effects of Nd substitution on the polarization properties and electronic structures of bismuth titanate single crystals. Mater. Res. Bull. 40, 1044–1051 (2005)CrossRefGoogle Scholar
  38. 38.
    F.J. Yang, P. Su, C. Wei, X.Q. Chen, C.P. Yang, W.Q. Cao, Large magnetic response in (Bi4Nd)Ti3(Fe0.5Co0.5)O15 ceramic at room-temperature. J. Appl. Phys. 110, 126102 (2011)CrossRefGoogle Scholar
  39. 39.
    E. Langenberg, I. Fina, J. Ventura, B. Noheda, M. Varela, J. Fontcuberta, Dielectric properties of (Bi0.9La0.1)2NiMnO6 thin films: Determining the intrinsic electric and magnetoelectric response. Phys. Rev. B 86, 085108 (2012)CrossRefGoogle Scholar
  40. 40.
    G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 (2006)CrossRefGoogle Scholar
  41. 41.
    H. Sun, X.M. Lu, T.T. Xu, J. Su, Y.M. Jin, C.C. Ju, F.Z. Huang, J.S. Zhu, Study of multiferroic properties in Bi5Fe0.5Co0.5Ti3O15 thin films. J. Appl. Phys. 111, 124116 (2012)CrossRefGoogle Scholar
  42. 42.
    W. Bai, W.H. Yin, J. Yang, K. Tang, Y.Y. Zhang, T. Lin, X.J. Meng, C.G. Duan, X.D. Tang, J.H. Chu, Cryogenic temperature relaxor-like dielectric responses and magnetodielectric coupling in Aurivillius Bi5Ti3FeO15 multiferroic thin films. J. Appl. Phys. 116, 084103 (2014)CrossRefGoogle Scholar
  43. 43.
    X.Z. Zuo, M.L. Zhang, E.J. He, P. Zhang, J. Yang, X.B. Zhu, J.M. Dai, Magnetic, dielectric, and magneto-dielectric properties of Aurivillius Bi7Fe2CrTi3O21 ceramic. Ceram. Int. 44, 5319–5326 (2018)CrossRefGoogle Scholar
  44. 44.
    S.J. Sun, W.J. Chen, L. Fang, N. Cheng, Z.Y. Xiao, Z.Q. Zhao, Y.S. Tian, Y.L. Lu, Dielectric relaxation and microwave absorption properties of Aurivillius-type multiferroic ceramics. Ceram. Int. 44, 9942–9949 (2018)CrossRefGoogle Scholar
  45. 45.
    G. Chen, W. Bai, L. Sun, J. Wu, Q. Ren, W.F. Xu, J. Yang, X.J. Meng, X.D. Tang, C.G. Duan, J.H. Chu, Processing optimization and sintering time dependent magnetic and optical behaviors of Aurivillius Bi5Ti3FeO15 ceramics. J. Appl. Phys. 113, 034901 (2013)CrossRefGoogle Scholar
  46. 46.
    W.S. Woo, S.S. Won, C.W. Ahn, S.A. Chae, A. Ullah, I.W. Kim, Photovoltaic effect of lead-free (Na0.82K0.18)0.5Bi4.5Ti4O15 ferroelectric thin film using Pt and indium tin oxide top electrodes. J. Appl. Phys. 115, 034107 (2014)CrossRefGoogle Scholar
  47. 47.
    S. Kooriyattil, R.K. Katiyar, S.P. Pavunny, G. Morell, R.S. Katiyar, Photovoltaic properties of Aurivillius phase Bi5FeTi3O15 thin films grown by pulsed laser deposition. Appl. Phys. Lett. 105, 072908 (2014)CrossRefGoogle Scholar
  48. 48.
    Y.H. Shu, Q.Q. Ma, L. Cao, Z.Z. Ding, X.Q. Chen, F.J. Yang, Bandgap tunability of Aurivillius Bi4NdTi3(Fe0.5M0.5)O15 (M = Cr, Ni, Fe, Co, Mn) thin films. J. Alloys Compd. 773, 934–939 (2019)CrossRefGoogle Scholar
  49. 49.
    Z.H. Duan, K. Jiang, L.P. Xu, Y.W. Li, Z.G. Hu, J.H. Chu, Intrinsic relationship between electronic structures and phase transition of SrBi2−xNdxNb2O9 ceramics from ultraviolet ellipsometry at elevated temperatures. J. Appl. Phys. 115, 054107 (2014)CrossRefGoogle Scholar
  50. 50.
    Y.Y. Zang, D. Xie, Y. Chen, X. Wu, G. Li, D. Plant, Tuning the structural and optical properties of bismuth titanate by different Nd substitution content. Integr. Ferroelectr. 133, 73–80 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xuzhong Zuo
    • 1
  • Enjie He
    • 1
    Email author
  • Zhenzhen Hui
    • 2
  • Jin Bai
    • 3
  • Jie Yang
    • 3
  • Xuebin Zhu
    • 3
  • Jianming Dai
    • 3
  1. 1.College of Electrical and Electronic EngineeringAnhui Science and Technology UniversityBengbuChina
  2. 2.College of Chemistry and Materials EngineeringAnhui Science and Technology UniversityBengbuChina
  3. 3.Key Laboratory of Materials Physics, Institute of Solid State PhysicsUniversity of Chinese Academy of SciencesHefeiChina

Personalised recommendations