Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16308–16315 | Cite as

Facile preparation of porous erythrocyte-like CuCo2O4 as active material of lithium ion batteries anode

  • Hongmei Xu
  • Xiaolan SongEmail author
  • Ying Zhang
  • Zhenzhen Qin
  • Ting Ma
  • Hui Wang
Article
  • 32 Downloads

Abstract

The porous erythrocyte-like CuCo2O4 was first prepared in this work by a convenient solvothermal post-calcination method used polyvinylpyrrolidone (PVP) as structure-directing agent and ethanol as solvent. When used as anode active materials of Li-ion batteries (LIBs), that 973 Ah/kg of reversible capacity and above 98% of coulombic efficiencies were made by the porous erythrocyte-like CuCo2O4 at 0.5 A/g of current density over 300 times. And cycling at 0.1 A/g of current density the starting specific discharge and charge capacities were 1428 and 1052 Ah/kg higher than theoretical capacity. Excellent cycling performance kept 96% of the reversible capacity retention. The superior rate performances were made at 0.1, 0.2, 0.5, 1, 2 and 0.1 A/g of current densities for 15 times. These exceptional electrochemical performances are all related to its particular compacted morphology and mesoporous spinel structure.

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Fundamental Research Funds for Central Universities of Central South University (2018zzts803 and 2019zzts693).

Funding

Fundamental Research Funds for Central Universities of Central South University (2018zzts803 and 2019zzts693).

Compliance with ethical standards

Conflict of interest

There are no conflicts of interest in the submission and the work described was original research that has not been published previously. All authors have consulted the “Information for Authors” and approved to submit this manuscript.

References

  1. 1.
    L. Lu, F. Min, Z. Luo, S. Wang, F. Teng, G. Li, C. Feng, Synthesis and electrochemical properties of CuCo2O4 as anode material for lithium-ion battery. J. Nanosci. Nanotechnol. 17(7), 4763–4771 (2017).  https://doi.org/10.1166/jnn.2017.13782 CrossRefGoogle Scholar
  2. 2.
    G. Gao, H.B. Wu, B. Dong, S. Ding, X.W. Lou, Growth of ultrathin ZnCo2O4 nanosheets on reduced graphene oxide with enhanced lithium storage properties. Adv Sci (Weinh) 2(1–2), 1400014 (2015).  https://doi.org/10.1002/advs.201400014 CrossRefGoogle Scholar
  3. 3.
    G. Li, L. Xu, Y. Zhai, Y. Hou, Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J. Mater. Chem. A 3(27), 14298–14306 (2015).  https://doi.org/10.1039/c5ta03145a CrossRefGoogle Scholar
  4. 4.
    F. Fu, J. Li, Y. Yao, X. Qin, Y. Dou, H. Wang, J. Tsui, K.Y. Chan, M. Shao, Hierarchical NiCo2O4 micro- and nanostructures with tunable morphologies as anode materials for lithium- and sodium-ion batteries. ACS Appl. Mater. Interfaces. 9(19), 16194–16201 (2017).  https://doi.org/10.1021/acsami.7b02175 CrossRefGoogle Scholar
  5. 5.
    G. Zhang, B.Y. Xia, C. Xiao, L. Yu, X. Wang, Y. Xie, X.W. Lou, General formation of complex tubular nanostructures of metal oxides for the oxygen reduction reaction and lithium-ion batteries. Angew. Chem. Int. Ed. Engl. 52(33), 8643–8647 (2013).  https://doi.org/10.1002/anie.201304355 CrossRefGoogle Scholar
  6. 6.
    F. Niu, N. Wang, J. Yue, L. Chen, J. Yang, Y. Qian, Hierarchically porous CuCo2O4 microflowers: a superior anode material for Li-ion batteries and a stable cathode electrocatalyst for Li-O 2 batteries. Electrochim. Acta 208, 148–155 (2016).  https://doi.org/10.1016/j.electacta.2016.05.026 CrossRefGoogle Scholar
  7. 7.
    M. Bhardwaj, A. Patrike, R. Naphade, S. Tonda, Y. Gawli, S. Ogale, Porous CuCo2O4 nanotubules for Li-ion battery anode. ChemistrySelect 2(10), 2922–2926 (2017).  https://doi.org/10.1002/slct.201700183 CrossRefGoogle Scholar
  8. 8.
    S. Cai, G. Wang, M. Jiang, H. Wang, Template-free fabrication of porous CuCo2O4 hollow spheres and their application in lithium ion batteries. J. Solid State Electrochem. 21(4), 1129–1136 (2016).  https://doi.org/10.1007/s10008-016-3414-1 CrossRefGoogle Scholar
  9. 9.
    Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J. Power Sources 173(1), 495–501 (2007).  https://doi.org/10.1016/j.jpowsour.2007.06.022 CrossRefGoogle Scholar
  10. 10.
    M. Bhardwaj, A. Suryawanshi, R. Fernandes, S. Tonda, A. Banerjee, D. Kothari, S. Ogale, CuCo2O4 nanowall morphology as Li-ion battery anode: enhancing electrochemical performance through stoichiometry control. Mater. Res. Bull. 90, 303–310 (2017).  https://doi.org/10.1016/j.materresbull.2016.12.014 CrossRefGoogle Scholar
  11. 11.
    S. Liu, S. Zhang, Y. Xing, S. Wang, R. Lin, X. Wei, L. He, Facile synthesis of hierarchical mesoporous CuxCo3−xO4 nanosheets array on conductive substrates with high-rate performance for Li-ion batteries. Electrochim. Acta 150, 75–82 (2014).  https://doi.org/10.1016/j.electacta.2014.10.131 CrossRefGoogle Scholar
  12. 12.
    J. Ma, H. Wang, X. Yang, Y. Chai, R. Yuan, Porous carbon-coated CuCo2O4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries. J. Mater. Chem. A 3(22), 12038–12043 (2015).  https://doi.org/10.1039/c5ta00890e CrossRefGoogle Scholar
  13. 13.
    W. Lei, L. Nie, S. Liu, Y. Zhuo, R. Yuan, Influence of annealing temperature on microstructure and lithium storage performance of self-templated CuxCo3−xO4 hollow microspheres. RSC Adv. 6(67), 62640–62646 (2016).  https://doi.org/10.1039/c6ra10215h CrossRefGoogle Scholar
  14. 14.
    A. Basu, M. Bhardwaj, Y. Gawli, C. Rode, S. Ogale, A robust highly flexible all-solid-state micro pseudocapacitor based on ternary oxide CuCo2O4 having ultrathin porous nanowall type morphology blended with CNT. ChemistrySelect 1(16), 5159–5164 (2016).  https://doi.org/10.1002/slct.201601348 CrossRefGoogle Scholar
  15. 15.
    P. Li, W. Sun, Q. Yu, P. Yang, J. Qiao, Z. Wang, D. Rooney, K. Sun, An effective three-dimensional ordered mesoporous CuCo2O4 as electrocatalyst for Li-O2 batteries. Solid State Ionics 289, 17–22 (2016).  https://doi.org/10.1016/j.ssi.2016.02.014 CrossRefGoogle Scholar
  16. 16.
    Y. Jin, L. Wang, Q. Jiang, X. Du, C. Ji, X. He, Mesoporous MnCo2O4 microflower constructed by sheets for lithium ion batteries. Mater. Lett. 177, 85–88 (2016).  https://doi.org/10.1016/j.matlet.2016.04.157 CrossRefGoogle Scholar
  17. 17.
    L. Guo, Q. Ru, X. Song, S. Hu, Y. Mo, Mesoporous ZnCo2O4 microspheres as an anode material for high-performance secondary lithium ion batteries. RSC Adv. 5(25), 19241–19247 (2015).  https://doi.org/10.1039/c4ra15553j CrossRefGoogle Scholar
  18. 18.
    H.S. Jadhav, S.M. Pawar, A.H. Jadhav, G.M. Thorat, J.G. Seo, Hierarchical mesoporous 3D flower-like CuCo2O4/NF for high-performance electrochemical energy storage. Sci Rep 6, 31120 (2016).  https://doi.org/10.1038/srep31120 CrossRefGoogle Scholar
  19. 19.
    X. Liang, Q. Wang, Y. Ma, D. Zhang, A high performance asymmetric supercapacitor based on in situ prepared CuCo2O4 nanowires and PPy nanoparticles on a two-ply carbon nanotube yarn. Dalton Trans. 47(47), 17146–17152 (2018).  https://doi.org/10.1039/c8dt03938k CrossRefGoogle Scholar
  20. 20.
    M. Pang, S. Jiang, J. Zhao, S. Zhang, R. Liu, W. Qu, Q. Pan, B. Xing, L. Gu, H. Wang, Designed fabrication of three-dimensional δ-MnO2-cladded CuCo2O4 composites as an outstanding supercapacitor electrode material. N. J. Chem. 42(23), 19153–19163 (2018).  https://doi.org/10.1039/c8nj03774d CrossRefGoogle Scholar
  21. 21.
    W. Kang, Y. Tang, W. Li, Z. Li, X. Yang, J. Xu, C.S. Lee, Porous CuCo2O4 nanocubes wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes. Nanoscale 6(12), 6551–6556 (2014).  https://doi.org/10.1039/c4nr00446a CrossRefGoogle Scholar
  22. 22.
    C. Cheng, F. Chen, J. Wang, G. Lai, H. Yi, Synthesis of nano-CuCo2O4 with high electrochemical performance as anode material in lithium-ion batteries. J. Electron. Mater. 45(1), 553–556 (2015).  https://doi.org/10.1007/s11664-015-4148-z CrossRefGoogle Scholar
  23. 23.
    J. Cheng, X. Li, Z. Wang, H. Guo, W. Peng, Q. Hu, Cubic CuCo2O4 microspheres with FeO nanowires link as free-standing anode for high-performance lithium ion batteries. Ceram. Int. 42(2), 2871–2875 (2016).  https://doi.org/10.1016/j.ceramint.2015.09.153 CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, H. Liu, M. Huang, J.M. Zhang, W. Zhang, F. Dong, Y.X. Zhang, Engineering ultrathin Co(OH)2 nanosheets on dandelion-like CuCo2O4 microspheres for binder-free supercapacitors. ChemElectroChem 4(3), 721–727 (2017).  https://doi.org/10.1002/celc.201600661 CrossRefGoogle Scholar
  25. 25.
    Niu JL, Zeng CH, Peng HJ, Lin XM, Sathishkumar P, Cai YP (2017) Formation of N-doped carbon-coated ZnO/ZnCo2O4/CuCo2O4 derived from a polymetallic metal-organic framework: toward high-rate and long-cycle-life lithium storage. Small.  https://doi.org/10.1002/smll.201702150
  26. 26.
    D. Han, H. Hu, B. Liu, G. Song, H. Yan, J. Di, CuCo2O4 nanoparticles encapsulated by onion-like carbon layers: a promising solution for high-performance lithium ion battery. Ceram. Int. 42(10), 12460–12466 (2016).  https://doi.org/10.1016/j.ceramint.2016.05.025 CrossRefGoogle Scholar
  27. 27.
    A.F. Shaikh, R.S. Kalubarme, M.S. Tamboli, S.S. Patil, M.V. Kulkarni, D.R. Patil, S.W. Gosavi, C.-J. Park, B.B. Kale, Nanowires of Ni substituted MnCo2O4 as an anode material for high performance lithium-ion battery. ChemistrySelect 2(17), 4630–4637 (2017).  https://doi.org/10.1002/slct.201700267 CrossRefGoogle Scholar
  28. 28.
    Hu X, Zhang S, Li X, Sun X, Cai S, Ji H, Hou F, Zheng C, Hu W (2017) Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance. J. Mater. Sci. 52 (9):5268–5282.  https://doi.org/10.1007/s10853-017-0767-5
  29. 29.
    J. Li, J. Wang, X. Liang, Z. Zhang, H. Liu, Y. Qian, S. Xiong, Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures. ACS Appl. Mater. Interfaces. 6(1), 24–30 (2014).  https://doi.org/10.1021/am404841t CrossRefGoogle Scholar
  30. 30.
    P. Zeng, X. Wang, M. Ye, Q. Ma, J. Li, W. Wang, B. Geng, Z. Fang, Excellent lithium ion storage property of porous MnCo2O4 nanorods. RSC Adv. 6(27), 23074–23084 (2016).  https://doi.org/10.1039/c5ra26176g CrossRefGoogle Scholar
  31. 31.
    F. Jiang, Q. Su, H. Li, L. Yao, H. Deng, G. Du, Growth of ultrafine CuCo2O4 nanoparticle on graphene with enhanced lithium storage properties. Chem. Eng. J. 314, 301–310 (2017).  https://doi.org/10.1016/j.cej.2016.11.064 CrossRefGoogle Scholar
  32. 32.
    Y. Li, M. Liu, S. Hou, P. Wang, X. Pan, M. Xie, Y. Chen, L. Zhao, Direct growth of urchin-like CuCo2O4 on Ni foam for ultrahigh capacity and excellent rate ability of lithium ion batteries. Appl. Surf. Sci. 458, 517–522 (2018).  https://doi.org/10.1016/j.apsusc.2018.07.071 CrossRefGoogle Scholar
  33. 33.
    S.M. Pawar, B.S. Pawar, B. Hou, A.T.A. Ahmed, H.S. Chavan, Y. Jo, S. Cho, J. Kim, J. Seo, S. Cha, A.I. Inamdar, H. Kim, H. Im, Facile electrodeposition of high-density CuCo2O4 nanosheets as a high-performance Li-ion battery anode material. J. Ind. Eng. Chem. 69, 13–17 (2019).  https://doi.org/10.1016/j.jiec.2018.09.042 CrossRefGoogle Scholar
  34. 34.
    H. Zhang, Z. Tang, K. Zhang, L. Wang, H. Shi, G. Zhang, H. Duan, Pseudo-solid-solution CuCo2O4/C nanofibers as excellent anodes for lithium ion batteries. Electrochim. Acta 247, 692–700 (2017).  https://doi.org/10.1016/j.electacta.2017.07.063 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hongmei Xu
    • 1
    • 2
  • Xiaolan Song
    • 1
    • 2
    Email author
  • Ying Zhang
    • 1
    • 2
  • Zhenzhen Qin
    • 1
    • 2
  • Ting Ma
    • 1
    • 2
  • Hui Wang
    • 1
    • 2
  1. 1.School of Mineral Processing & BioengineeringCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory for Mineral Materials & Application of Hunan ProvinceCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations