Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16275–16286 | Cite as

Energy harvesting properties of chitosan film in harvesting water vapour into electrical energy

  • Muhammad Balyan
  • Tulus Ikhsan Nasution
  • Irwana Nainggolan
  • Hasmaliza Mohamad
  • Zainal Arifin AhmadEmail author
Article
  • 96 Downloads

Abstract

A water vapor cell (WVC) made of chitosan-based film has been successfully generated electrical energy when directly interacted with water vapor. The chitosan concentration in film was varied from 0 to 4.5%. WVC was characterized using a climate chamber oven to determine the energy harvesting properties when exposed to water vapour which represented as relative humidity (30–90% RH). No electrical energy was generated by 0% chitosan film. However, the other concentration generated electrical energy started to increase and reaching almost a steady state after 13–11 h exposure to > 70% RH. The highest electrical energy was 120.13 μW obtained by 4% chitosan film and maintained continuously under 90% RH exposure. This electrical energy generation was due to the chemical interaction of hydrogen bonding that occurs between water vapor molecules and amine groups (NH2) of chitosan film as proven by FTIR analysis. Furthermore, chitosan film morphology was also contributing to the energy harvesting ability as proven by AFM and FESEM analyses where film concentration ≤ 4.0% have a smooth surface which favored the electrical energy generation.

Notes

Acknowledgements

This work is financially and technically supported by research university Grant, Universiti Sains Malaysia (USM) [RUI 1001/PBAHAN/80140876], Ministry of Research Indonesia and University of Sumatera Utara.

References

  1. 1.
    N. Altin, S.E. Eyimaya, A combined energy management algorithm for wind turbine/battery hybrid system. J. Electron. Mater. 47, 4430–4436 (2018)CrossRefGoogle Scholar
  2. 2.
    A. Elshkaki, T.E. Graedel, Solar cell metals and their hosts: a tale of oversupply and undersupply. Appl. Energy 158, 167–177 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Fant, C. Adam Schlosser, K. Strzepek, The impact of climate change on wind and solar resources in southern Africa. Appl. Energy 161, 556–564 (2016)CrossRefGoogle Scholar
  4. 4.
    V. Lojpur, J. Krstić, Z. Kačarević-Popović, N. Filipović, I.L. Validžić, Flexible and high-efficiency Sb2S3/solid carrier solar cell at low light intensity. Environ. Chem. Lett. 16, 659–664 (2018)CrossRefGoogle Scholar
  5. 5.
    R.T. Magal, V. Selvaraj, A comparative study for the electrocatalytic oxidation of alcohol on Pt-Au nanoparticle-supported copolymer-grafted graphene oxide composite for fuel cell application. Ionics 24, 1439–1450 (2018)CrossRefGoogle Scholar
  6. 6.
    D. Zheng, A.T. Eseye, J. Zhang, H. Li, Short-term wind power forecasting using a double-stage hierarchical ANFIS approach for energy management in microgrid. Prot. Control Mod. Power Syst. 2, 13 (2017)CrossRefGoogle Scholar
  7. 7.
    E.J. Sheu, A. Mitsos, Optimization of a hybrid solar-fossil fuel plant: solar steam reforming of methane in a combined cycle. Energy 51, 193–202 (2013)CrossRefGoogle Scholar
  8. 8.
    U. Desideri, P.E. Campana, Analysis and comparison between a concentrating solar and a photovoltaic power plant. Appl. Energy 113, 422–433 (2014)CrossRefGoogle Scholar
  9. 9.
    F.H. Sobrino, C.R. Monroy, J.L.H. Pérez, Critical analysis on hydrogen as an alternative to fossil fuels and biofuels for vehicles in Europe. Renew. Sust. Energ. Rev. 14, 772–780 (2010)CrossRefGoogle Scholar
  10. 10.
    S. Samsatli, N.J. Samsatli, The role of renewable hydrogen and inter-seasonal storage in decarbonising heat—comprehensive optimisation of future renewable energy value chains. Appl. Energy 233–234, 854–893 (2019)CrossRefGoogle Scholar
  11. 11.
    S. Wang, S. Wang, Impacts of wind energy on environment: a review. Renew. Sust. Energy Rev. 49, 437–443 (2015)CrossRefGoogle Scholar
  12. 12.
    I. Corazzari, R. Nisticò, F. Turci, M.G. Faga, F. Franzoso, S. Tabasso, G. Magnacca, Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: thermal degradation and water adsorption capacity. Polym. Degrad. Stabil. 112, 1–9 (2015)CrossRefGoogle Scholar
  13. 13.
    Z. Guo, H. Liu, X. Chen, X. Ji, P. Li, Hydroxyl radicals scavenging activity of N-substituted chitosan and quaternized chitosan. Bioorg. Med. Chem. Lett. 16, 6348–6350 (2006)CrossRefGoogle Scholar
  14. 14.
    K. Pandiselvi, S. Thambidurai, Chitosan-ZnO/polyaniline ternary nanocomposite for high-performance supercapacitor. Ionics 20, 551–561 (2014)CrossRefGoogle Scholar
  15. 15.
    F. Liu, B. Qin, L. He, R. Song, Novel starch/chitosan blending membrane: antibacterial, permeable and mechanical properties. Carbohydr. Polym. 78, 146–150 (2009)CrossRefGoogle Scholar
  16. 16.
    Y. Pan, T. Wu, H. Bao, L. Li, Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr. Polym. 83, 1908–1915 (2011)CrossRefGoogle Scholar
  17. 17.
    P.K. Sahu, P.K. Sahu, S.K. Gupta, D.D. Agarwal, Chitosan: an efficient, reusable, and biodegradable catalyst for green synthesis of heterocycles. Ind. Eng. Chem. Res. 53, 2085–2091 (2014)CrossRefGoogle Scholar
  18. 18.
    M.H. Buraidah, L.P. Teo, S.R. Majid, R. Yahya, R.M. Taha, A.K. Arof, Characterizations of chitosan-based polymer electrolyte photovoltaic cells. Int. J. Photoenergy 2010, 1–7 (2010)CrossRefGoogle Scholar
  19. 19.
    K.K. Sadasivuni, K. Deshmukh, T.N. Ahipa, A. Muzaffar, M.B. Ahamed, S.K.K. Pasha, M.A.-A. Al-Maadeed, Flexible, biodegradable and recyclable solar cells: a review. J. Mater. Sci. 30, 951–974 (2019)Google Scholar
  20. 20.
    P. Hao, Z. Zhao, Y. Leng, J. Tian, Y. Sang, R.I. Boughton, C.P. Wong, H. Liu, B. Yang, Graphene-based nitrogen self-doped hierarchical porous carbon aerogels derived from chitosan for high performance supercapacitors. Nano Energy. 15, 9–23 (2015)CrossRefGoogle Scholar
  21. 21.
    G. Sun, B. Li, J. Ran, X. Shen, H. Tong, Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors. Electrochim. Acta 171, 13–22 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Yamagata, K. Soeda, S. Ikebe, S. Yamazaki, M. Ishikawa, Chitosan-based gel electrolyte containing an ionic liquid for high-performance nonaqueous supercapacitors. Electrochim. Acta 100, 275–280 (2013)CrossRefGoogle Scholar
  23. 23.
    J. Ma, Y. Sahai, Chitosan biopolymer for fuel cell applications. Carbohydr. Polym. 92, 955–975 (2013)CrossRefGoogle Scholar
  24. 24.
    N. Shaari, S.K. Kamarudin, Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J. Power Sources 289, 71–80 (2015)CrossRefGoogle Scholar
  25. 25.
    J. Kalaiselvimary, M.R. Prabhu, Influence of sulfonated GO/sulfonated biopolymer as polymer electrolyte membrane for fuel cell application. J. Mater. Sci. 29, 5525–5535 (2018)Google Scholar
  26. 26.
    J. Chupp, A. Shellikeri, G. Palui, J. Chatterjee, Chitosan-based gel film electrolytes containing ionic liquid and lithium salt for energy storage applications. J. Appl. Polym. Sci. 132, 42143 (2015)CrossRefGoogle Scholar
  27. 27.
    S. Hassan, M. Suzuki, A.A. El-Moneim, Synthesis of MnO2–chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application. J. Power Sources 246, 68–73 (2014)CrossRefGoogle Scholar
  28. 28.
    R. Ramkumar, M. Minakshi, Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans. 44, 6158–6168 (2015)CrossRefGoogle Scholar
  29. 29.
    T.I. Nasution, M. Balyan, I. Nainggolan, New application of chitosan film as a water vapor cell. Key Eng. Mater. 744, 339–345 (2017)CrossRefGoogle Scholar
  30. 30.
    T.I. Nasution, M. Balyan, I. Nainggolan, Improved lifetime of chitosan film in converting water vapor to electrical power by adding carboxymethyl cellulose. IOP Conf. Ser. 309, 012092 (2018)CrossRefGoogle Scholar
  31. 31.
    A. Ghosh, M. AzamAli, R. Walls, Modification of microstructural morphology and physical performance of chitosan films. Int. J. Biol. Macromol. 46, 179–186 (2010)CrossRefGoogle Scholar
  32. 32.
    L. Pradipkanti, D.K. Satapathy, Water desorption from a confined biopolymer. Soft Matter 14, 2163–2169 (2018)CrossRefGoogle Scholar
  33. 33.
    M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006)CrossRefGoogle Scholar
  34. 34.
    S. Sreekumar, F.M. Goycoolea, B.M. Moerschbacher, G.R. Rivera-Rodriguez, Parameters influencing the size of chitosan-TPP nano- and microparticles. Sci. Rep. 8, 4695 (2018)CrossRefGoogle Scholar
  35. 35.
    S. Begum, R. Pandian, V. Aswal, R. Ramasamy, Chitosan–gold–lithium nanocomposites as solid polymer electrolyte. J. Nanosci. Nanotechnol. 14, 5761–5773 (2014)CrossRefGoogle Scholar
  36. 36.
    M.O. Tuhin, N. Rahman, M.E. Haque, R.A. Khan, N.C. Dafader, R. Islam, M. Nurnabi, W. Tonny, Modification of mechanical and thermal property of chitosan–starch blend films. Radiat. Phys. Chem. 81, 1659–1668 (2012)CrossRefGoogle Scholar
  37. 37.
    Z.-H. Zhang, Z. Han, X.-A. Zeng, X.-Y. Xiong, Y.-J. Liu, Enhancing mechanical properties of chitosan films via modification with vanillin. Int. J. Biol. Macromol. 81, 638–643 (2015)CrossRefGoogle Scholar
  38. 38.
    I. Nainggolan, D. Shantini, T.I. Nasution, M.N. Derman, Role of metals content in spinach in enhancing the conductivity and optical band gap of chitosan films. Adv. Mater. Sci. Eng. 2015, 8 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Shantini, I. Nainggolan, T.I. Nasution, M.N. Derman, R. Mustaffa, N.Z. Abd Wahab, Hexanal gas detection using chitosan biopolymer as sensing material at room temperature. J. Sens. 2016, 7 (2016)CrossRefGoogle Scholar
  40. 40.
    A.J. Nagajothi, R. Kannan, S. Rajashabala, Studies on electrochemical properties of poly (ethylene oxide)-based gel polymer electrolytes with the effect of chitosan for lithium–sulfur batteries. Polym. Bull. 74, 4887–4897 (2017)CrossRefGoogle Scholar
  41. 41.
    Y. Wang, A. Pitto-Barry, A. Habtemariam, I. Romero-Canelon, P.J. Sadler, N.P.E. Barry, Nanoparticles of chitosan conjugated to organo-ruthenium complexes. Inorg. Chem. Front. 3, 1058–1064 (2016)CrossRefGoogle Scholar
  42. 42.
    B. ZenginKurt, F. Uckaya, Z. Durmus, Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. Int. J. Biol. Macromol. 96, 149–160 (2017)CrossRefGoogle Scholar
  43. 43.
    F. Zia, K.M. Zia, M. Zuber, S. Rehman, S. Tabasum, S. Sultana, Synthesis and characterization of chitosan/curcumin blends based polyurethanes. Int. J. Biol. Macromol. 92, 1074–1081 (2016)CrossRefGoogle Scholar
  44. 44.
    L.H. Chen, T. Li, C.C. Chan, R. Menon, P. Balamurali, M. Shaillender, B. Neu, X.M. Ang, P. Zu, W.C. Wong, K.C. Leong, Chitosan based fiber-optic Fabry-Perot humidity sensor. Sensor. Actuat. B Chem. 169, 167–172 (2012)CrossRefGoogle Scholar
  45. 45.
    A. Havare, S. Okur, G. Sanli, Humidity sensing properties of chitosan by using quartz crystal microbalance method. Sens. Lett. 10, 906–910 (2012)CrossRefGoogle Scholar
  46. 46.
    P. Wang, K. Ni, B. Wang, Q. Ma, W. Tian, A chitosan-coated humidity sensor based on Michelson interferometer with thin-core optical fiber. in 16th International Conference on Optical Communications and Networks (ICOCN), vol. 2017, p. 1–3 (2017)Google Scholar
  47. 47.
    J. Zou, K. Zhang, Q. Zhang, Giant humidity response using a chitosan-based protonic conductive sensor. IEEE Sens. J. 16, 8884–8889 (2016)CrossRefGoogle Scholar
  48. 48.
    C. Branca, G. D’Angelo, C. Crupi, K. Khouzami, S. Rifici, G. Ruello, U. Wanderlingh, Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: a FTIR-ATR study on chitosan and chitosan/clay films. Polymer 99, 614–622 (2016)CrossRefGoogle Scholar
  49. 49.
    E. Prokhorov, G. Luna-Bárcenas, J.B. González-Campos, Y. Kovalenko, Z.Y. García-Carvajal, J. Mota-Morales, Proton conductivity and relaxation properties of chitosan-acetate films. Electrochim. Acta 215, 600–608 (2016)CrossRefGoogle Scholar
  50. 50.
    M. Grossutti, J.R. Dutcher, Correlation between chain architecture and hydration water structure in polysaccharides. Biomacromolecules 17, 1198–1204 (2016)CrossRefGoogle Scholar
  51. 51.
    C. Qiao, X. Ma, J. Zhang, J. Yao, Effect of hydration on water state, glass transition dynamics and crystalline structure in chitosan films. Carbohydr. Polym. 206, 602–608 (2019)CrossRefGoogle Scholar
  52. 52.
    L. Ren, X. Yan, J. Zhou, J. Tong, X. Su, Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. Int. J. Biol. Macromol. 105, 1636–1643 (2017)CrossRefGoogle Scholar
  53. 53.
    T.I. Nasution, I. Nainggolan, S.D. Hutagalung, K.R. Ahmad, Z.A. Ahmad, The sensing mechanism and detection of low concentration acetone using chitosan-based sensors. Sens. Actuator B Chem. 177, 522–528 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia
  2. 2.Physics Department, Faculty of Mathematics and Natural ScienceUniversitas Sumatera UtaraMedanIndonesia
  3. 3.Chemistry Department, Faculty of Mathematics and Natural ScienceUniversitas Sumatera UtaraMedanIndonesia

Personalised recommendations