Advertisement

Electromagnetic and microwave absorption performance of Ni0.4Zn0.4Co0.2Fe2O4/polymethacrylimide foam synthesized via polymerization

  • Wenjing Chen
  • Zhengjun YaoEmail author
  • Haiyan Lin
  • Jintang Zhou
  • Azhar Ali Haidry
  • Yi Qian
  • Xinlu Guo
  • Kun Qian
Article
  • 19 Downloads

Abstract

In this paper, the effect of nickel–zinc–cobalt ferrite (NZCFO) content on the electromagnetic properties of polymethacrylimide (PMI)/NZCFO was studied. The functional nano-composite was successfully synthesized via novel suspension polymerization. Subsequently, the presence of functional groups and microstructure was investigated by Fourier transform-infrared spectroscopy and scanning electron microscopy, respectively. Based on electromagnetic analysis, it is found that the compressive strength and the entire X-band of the composite foam (thickness greater than 27 mm) reach to 2.6 MPa and an effective bandwidth (RL < − 10 dB) when the NZCFO content is 30 wt% of the reactive monomer. The analysis confirmed that the PMI/NZCFO (PMI/FO) foam composites enable the loss of an electromagnetic wave through the natural resonance effect of NZCFO. At the same time, the interwoven network structure and the cascade structure have a certain promotion effect on the loss of electromagnetic wave due to porous morphology of PMI foam. The synergetic effect of NZCFO and PMI shows the composite material owes significantly improved electromagnetic and microwave absorption performance.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (51702158), the Fundamental Research Funds for the Central Universities (NP2018111), Open Fund of Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology No. 56XCA18159-3.

Compliance with ethical standards

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

  1. 1.
    Q. Zhang, C. Liu, Z. Wu, Y. Yang, Z. Xie, H. Zhou, C. Chen, Preparation of rGO/PVA/CIP composites and their microwave absorption properties. J. Magn. Magn. Mater. 479, 337–343 (2019)CrossRefGoogle Scholar
  2. 2.
    J. Zhang, R. Shu, C. Guo, R. Sun, Y. Chen, J. Yuan, Fabrication of nickel ferrite microspheres decorated multi-walled carbon nanotubes hybrid composites with enhanced electromagnetic wave absorption properties. J. Alloy. Compd. 784, 422–430 (2019)CrossRefGoogle Scholar
  3. 3.
    Y. Wu, R. Shu, Z. Li, C. Guo, G. Zhang, J. Zhang, W. Li, Design and electromagnetic wave absorption properties of reduced graphene oxide/multi-walled carbon nanotubes/nickel ferrite ternary nanocomposites. J. Alloy. Compd. 784, 887–896 (2019)CrossRefGoogle Scholar
  4. 4.
    S. Acharya, J. Ray, T.U. Patro, P. Alegaonkar, S. Datar, Microwave absorption properties of reduced graphene oxide strontium hexaferrite/poly (methyl methacrylate) composites. Nanotechnology 29, 115605 (2018)CrossRefGoogle Scholar
  5. 5.
    C.G. Jayalakshmi, A. Inamdar, A. Anand, B. Kandasubramanian, Polymer matrix composites as broadband radar absorbing structures for stealth aircrafts. J. Appl. Polym. Sci. 136, 47241 (2019)Google Scholar
  6. 6.
    T. Han, R. Luo, G. Cui, L. Wang, Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J. Eur. Ceram. Soc. 39, 1743–1756 (2019)CrossRefGoogle Scholar
  7. 7.
    Y. Qian, Z. Yao, H. Lin, J. Zhou, Mechanical and microwave absorption properties of 3D-printed Li044Zn0.2Fe2.36O4/polylactic acid composites using fused deposition modeling. J. Mater. Sci. 29, 19296–19307 (2018)Google Scholar
  8. 8.
    R. Meng, T. Zhang, H. Yu, J. Zhang, G. Wen, X. Huang, L. Huang, L. Xia, B. Zhong, A facile coprecipitation method to synthesize FexOy/Fe decorated graphite sheets with enhanced microwave absorption properties. Nanotechnology. 30, 185704 (2019)CrossRefGoogle Scholar
  9. 9.
    Y. Lin, J. Wang, H. Yang, L. Wang, In situ preparation of PANI/ZnO/CoFe2O4 composite with enhanced microwave absorption performance. J. Mater. Sci. 28, 17968–17975 (2017)Google Scholar
  10. 10.
    K. Pubby, S.B. Narang, Influence of grain size and porosity on X-band properties of Mn-Zr substituted Ni-Co ferrites. Mater. Lett. 244, 186–191 (2019)CrossRefGoogle Scholar
  11. 11.
    A.N. Hapishah, M.M. Syazwan, M.N. Hamidon, Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite. J. Mater. Sci. 29, 20573–20579 (2018)Google Scholar
  12. 12.
    Y. Lei, Z. Yao, H. Lin, J. Zhou, A.A. Haidry, P. Liu, The effect of polymerization temperature and reaction time on microwave absorption properties of Co-doped ZnNi ferrite/polyaniline composites. Rsc Adv. 8, 29344–29355 (2018)CrossRefGoogle Scholar
  13. 13.
    X. Meng, Q. Han, Y. Sun, Y. Liu, Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite. Ceram. Int. 45, 2504–2508 (2019)CrossRefGoogle Scholar
  14. 14.
    J.T. Siivola, S. Minakuchi, N. Takeda, Effect of temperature and humidity conditions on polymethacrylimide (PMI) foam core material and indentation response of its sandwich structures. J. Sandw. Struct. Mater. 17, 335–358 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Duan, Y. Liu, Y. Cui, G. Ma, T. Wang, Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating. Prog. Org. Coat. 125, 89–98 (2018)CrossRefGoogle Scholar
  16. 16.
    B. Heidari, M. Ansari, A. Hoseinabadi, H. Jiriaee, F. Heidary, The effect of ZnO, Fe3O4 and graphene oxide nanostructures on the microwave absorbing properties of polystyrene composites. J. Mater. Sci. 28, 1028–1037 (2017)Google Scholar
  17. 17.
    Q. Yu, Z. Wang, P. Chen, Q. Wang, Y. Wang, M. Ma, Microwave absorbing and mechanical properties of carbon fiber/bismaleimide composites imbedded with Fe@C/PEK-C nano-membranes. J. Mater. Sci. 30, 308–315 (2019)Google Scholar
  18. 18.
    T. Apeldorn, C. Keilholz, F. Wolff-Fabris, V. Altstaedt, Dielectric properties of highly filled thermoplastics for printed circuit boards. J. Appl. Polym. Sci. 128, 3758–3770 (2013)CrossRefGoogle Scholar
  19. 19.
    L. Qiu, X.H. Zheng, J. Zhu, D.W. Tang, S.Y. Yang, A.J. Hu, L.L. Wang, S.S. Li, Thermal transport in high-strength polymethacrylimide (PMI) foam insulations. Int. J. Thermophys. 36, 2523–2534 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Lu, A. Zhang, Y. Zhang, L. Ding, Y. Zheng, The effect of polymer polarity on the microwave absorbing properties of MWNTs. Rsc Adv. 5, 64925–64931 (2015)CrossRefGoogle Scholar
  21. 21.
    H.Y. Tang, X.B. Rao, Effects of multiple crosslinking agents on structure and properties of polymethacrylimide (PMI) foams. Mater. Res. Innov. 182, 473–477 (2014)Google Scholar
  22. 22.
    Z. Zhang, M. Xu, B. Li, Research on rapid preparation and performance of polymethacrylimide foams. J. Appl. Polym. Sci. 134, 44683 (2017)Google Scholar
  23. 23.
    H. Tang, Q. Chen, X. Rao, Study on foaming of PMI foam materials. J. Optoelectron. Adv. Mater. 16, 624–628 (2014)Google Scholar
  24. 24.
    Z. Zhang, M. Xu, B. Li, Preparation and characterization of polymethacrylimide/silicate foam. Polym. Adv. Technol. 29, 2982–2991 (2018)CrossRefGoogle Scholar
  25. 25.
    Y. Lei, Z. Yao, H. Lin, A.A. Haidry, J. Zhou, P. Liu, Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/polyaniline composites. Mater. Lett. 236, 456–459 (2019)CrossRefGoogle Scholar
  26. 26.
    M.N. Akhtar, M.A. Khan, Effect of rare earth doping on the structural and magnetic features of nanocrystalline spinel ferrites prepared via sol gel route. J. Magn. Magn. Mater. 460, 268–277 (2018)CrossRefGoogle Scholar
  27. 27.
    P. Liu, Z. Yao, J. Zhou, Z. Yang, L.B. Kong, Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J. Mater. Chem. C. 4, 9738–9749 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Du, Z. Yao, J. Zhou, P. Liu, T. Yao, R. Yao, Design of efficient microwave absorbers based on multi-layered polyaniline nanofibers and polyaniline nanofibers/Li03.5Zn03Fe2.35O4 nanocomposite. Synth. Met. 223, 49–57 (2017)CrossRefGoogle Scholar
  29. 29.
    Z. Yang, M. Li, Y. Zhang, X. Lyu, D. Hu, Hierarchical formation mechanism of anisotropic magnetite microflakes and their superior microwave attenuation properties. J. Alloy. Compd. 781, 321–329 (2019)CrossRefGoogle Scholar
  30. 30.
    P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, L.B. Kong, Facile synthesis and hierarchical assembly of flowerlike NiO structures with enhanced dielectric and microwave absorption properties. ACS Appl. Mater. Interface 9, 16404–16416 (2017)CrossRefGoogle Scholar
  31. 31.
    T.S. Lin, L.G. Sobotka, W. Froncisz, Superconductivity and microwave absorption. Nature 333, 21–22 (1988)CrossRefGoogle Scholar
  32. 32.
    S.J. Webb, A.D. Booth, Absorption of microwaves by microorganisms. Nature 222, 1199–1200 (1969)CrossRefGoogle Scholar
  33. 33.
    T. Qi, Z. Yao, J. Zhou, H. Lin, P. Liu, Y. Lei, Y. Zuo, Interfacial polymerization preparation of polyaniline fibers/Co0.2Ni0.4Zn0.4Fe2O4 urchin-like composite with superior microwave absorption performance. J. Alloy. Compd. 769, 669–677 (2018)CrossRefGoogle Scholar
  34. 34.
    X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, F. Li, One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3, 5535–5546 (2015)CrossRefGoogle Scholar
  35. 35.
    Z. Wang, H. Bi, P. Wang, M. Wang, Z. Liu, L. Shen, X. Liu, Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals. Phys. Chem. Chem. Phys. 17, 3796–3801 (2015)CrossRefGoogle Scholar
  36. 36.
    P.C. Kim, D.G. Lee, Composite sandwich constructions for absorbing the electromagnetic waves. Compos. Struct. 87, 161–167 (2009)CrossRefGoogle Scholar
  37. 37.
    X. Liu, H. Lu, L. Xing, Morphology and microwave absorption of carbon nanotube/bismaleimide foams. J. Appl. Polym. Sci. 131, 40233 (2014)Google Scholar
  38. 38.
    P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, L.B. Kong, Microwave absorption properties of double-layer absorbers based on Co0.2Ni0.4Zn0.4Fe2O4 ferrite and reduced graphene oxide composites. J. Alloy. Compd. 701, 841–849 (2017)CrossRefGoogle Scholar
  39. 39.
    B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu, J.P. Lei, J.P. Sun, Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J. Magn. Magn. Mater. 320, 1106–1111 (2008)CrossRefGoogle Scholar
  40. 40.
    J. Dong, Y. Lin, H. Zong, H. Yang, L. Wang, Z. Dai, Three-dimensional architecture reduced graphene oxide-LiFePO4 composite: preparation and excellent microwave absorption performance. Inorg. Chem. 58, 2031–2041 (2019)CrossRefGoogle Scholar
  41. 41.
    Z. Li, M. Ye, A. Han, H. Du, Preparation, characterization and microwave absorption properties of NiFe2O4 and its composites with conductive polymer. J. Mater. Sci. 27, 1031–1043 (2016)Google Scholar
  42. 42.
    H. Lv, H. Zhang, G. Ji, Z.J. Xu, Interface strategy to achieve tunable high frequency attenuation. ACS Appl. Mater. Interface 8, 6529–6538 (2016)CrossRefGoogle Scholar
  43. 43.
    L. Wang, B. Wen, X. Bai, C. Liu, H. Yang, Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber. J. Colloid Interface Sci. 540, 30–38 (2019)CrossRefGoogle Scholar
  44. 44.
    J. Dai, H. Yang, B. Wen, H. Zhou, L. Wang, Y. Lin, Flower-like MoS2@Bi2Fe4O9 microspheres with hierarchical structure as electromagnetic wave absorber. Appl. Surf. Sci. 479, 1226–1235 (2019)CrossRefGoogle Scholar
  45. 45.
    Y. Lin, J. Dai, H. Yang, L. Wang, F. Wang, Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem. Eng. J. 334, 1740–1748 (2018)CrossRefGoogle Scholar
  46. 46.
    K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures. Compos. Sci. Technol. 66, 576–584 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wenjing Chen
    • 1
    • 2
    • 3
  • Zhengjun Yao
    • 1
    • 2
    Email author
  • Haiyan Lin
    • 3
  • Jintang Zhou
    • 1
    • 2
  • Azhar Ali Haidry
    • 1
  • Yi Qian
    • 1
    • 2
  • Xinlu Guo
    • 1
    • 2
  • Kun Qian
    • 1
    • 2
  1. 1.College of Materials and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Material Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics)Ministry of Industry and Information TechnologyNanjingPeople’s Republic of China
  3. 3.Research Institute of Aerospace Special Materials & TechnologyBeijingPeople’s Republic of China

Personalised recommendations