Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16244–16250 | Cite as

Study on piezoelectric, dielectric and dispersive phase transition of BaTiO3–BaZrO3–CaTiO3 ceramics

  • Wenshuo Kang
  • Zhanshen ZhengEmail author
  • Yuanliang Li
  • Rujie Zhao


The dielectric, piezoelectric properties and dispersive ferroelectric phase transitions of (0.84 − x) BaTiO3–0.16CaTiO3–xBaZrO3 ternary ceramics were investigated in this manuscript. The study found that the optimum BaZrO3 doping amount was 0.1 mol%. Compared to the binary system, the ternary system has a denser microstructure and a more uniform grain size, and more excellent electrical properties. The influence mechanism of BaZrO3 doping on the system was explained in detail by lattice theory and domain theory.



This work was supported by Science and Technology Support Project of Hebei Province, China (Grant No. 15211111), and the National Natural Science Foundation of China (Grant No. 51502075).


  1. 1.
    W. Kang, Z. Zheng, Y. Li et al., Effect of doping Gd2O3 on dielectric and piezoelectric properties of BaZr0.1Ti0.9O3 ceramics by sol–gel method. J. Mater. Sci. Mater. Electron. 30(3), 2743–2749 (2019)CrossRefGoogle Scholar
  2. 2.
    J.Q. Qi, B.B. Liu, H.Y. Tian et al., Dielectric properties of barium zirconate titanate (BZT) ceramics tailored by different donors for high voltage applications. Solid State Sci. 14(10), 1520–1524 (2012)CrossRefGoogle Scholar
  3. 3.
    Z. Yu, C. Ang, R. Guo et al., Piezoelectric and strain properties of Ba(Ti1−xZrx)O3 ceramics. J. Appl. Phys. 92(3), 1489–1493 (2002)CrossRefGoogle Scholar
  4. 4.
    P.S. Dobal, A. Dixit, R.S. Katiyar et al., Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J. Appl. Phys. 89(12), 8085–8091 (2001)CrossRefGoogle Scholar
  5. 5.
    S.J. Kuang, X. Tang, L.Y. Li et al., Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1−x)O3 (0 ≤ x ≤ 0.12) ceramics. Scr Mater 61(1), 68–71 (2009)CrossRefGoogle Scholar
  6. 6.
    X. Wang, H. Yamada, C. Xu et al., Large electrostriction near the solubility limit in BaTiO3–CaTiO3 ceramics. Appl. Phys. Lett. 86(2), 022905 (2005)CrossRefGoogle Scholar
  7. 7.
    G. Hu, B. Xu, X. Yan et al., Fabrication and electrical properties of textured Ba(Zr0.2Ti0.8)O3–(Ba0.7Ca0.3)TiO3 ceramics using plate-like BaTiO3 particles as templates. J. Mater. Sci. Mater. Electron. 25(4), 1817–1827 (2014)CrossRefGoogle Scholar
  8. 8.
    Q. Xu, D. Zhan, H. Liu et al., Evolution of dielectric properties in BaZrxTi1−xO3 ceramics: effect of polar nano-regions. Acta Mater. 61(12), 4481–4489 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Liang, X. Zhu, J. Zhu et al., Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr, Ti)O3 lead-free piezoelectric ceramics. Ceram. Int. 40(2), 2585–2592 (2014)CrossRefGoogle Scholar
  10. 10.
    D. Lin, D. Xiao, J. Zhu et al., Piezoelectric and ferroelectric properties of lead-free [Bi1-y(Na1-x-yLix)]0.5BayTiO3 ceramics. J. Eur. Ceram. Soc. 26(15), 3247–3251 (2006)CrossRefGoogle Scholar
  11. 11.
    S. Yan, Z. Zheng, Y. Li et al., Effect of internal stresses on temperature-dependent dielectric properties of Fe-doped BZT ceramics. Ceram. Int. 43(15), 12605–12608 (2017)CrossRefGoogle Scholar
  12. 12.
    Y. Inagaki, K. Kakimoto, I. Kagomiya, Crystal growth and ferroelectric property of Na0.5K0.5NbO3 and Mn-doped Na0.5K0.5NbO3 crystals grown by floating zone method. J. Eur. Ceram. Soc. 30(2), 301–306 (2010)CrossRefGoogle Scholar
  13. 13.
    Y.F. Wang, Z.S. Zheng, Y.L. Li et al., Effect of Nb2O5 doping on dielectric properties of BaTi0.9Sn0.1O3 ceramics. Digest. J. Nanomater. Biostruct. 1(1), 193–199 (2018)Google Scholar
  14. 14.
    S. Murakami, N.T. Ahmed, D. Wang et al., Optimising dopants and properties in BiMeO3 (Me = Al, Ga, Sc, Y, Mg2/3Nb1/3, Zn2/3Nb1/3, Zn1/2Ti1/2) lead-free BaTiO3-BiFeO3 based ceramics for actuator applications. J. Eur. Ceram. Soc. 38(12), 4220–4231 (2018)CrossRefGoogle Scholar
  15. 15.
    E. Chandrakala, J.P. Praveen, B.K. Hazra et al., Effect of sintering temperature on structural, dielectric, piezoelectric and ferroelectric properties of sol–gel derived BZT-BCT ceramics. Ceram. Int. 42(4), 4964–4977 (2016)CrossRefGoogle Scholar
  16. 16.
    B.D. Begg, K.S. Finnie, E.R. Vance et al., Raman study of the relationship between Room- temperature tetragonality and the Curie point of barium titanate. J. Am. Ceram. Soc. 79(10), 2666–2672 (2005)CrossRefGoogle Scholar
  17. 17.
    J.P. Praveen, T. Karthik, A.R. James et al., Effect of poling process on piezoelectric properties of sol-gel derived BZT-BCT ceramics. J. Eur. Ceram. Soc. 35(6), 1785–1798 (2015)CrossRefGoogle Scholar
  18. 18.
    X. Wang, P. Liang, X. Chao et al., Dielectric properties and impedance spectroscopy of MnCO3− modified (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 Lead- free ceramics. J. Am. Ceram. Soc. 98(5), 1506–1514 (2015)CrossRefGoogle Scholar
  19. 19.
    F. Rubio-Marcos, J.J. Romero, M.G. Navarro-Rojero et al., Effect of ZnO on the structure, microstructure and electrical properties of KNN-modified piezoceramics. J. Eur. Ceram. Soc. 29(14), 3045–3052 (2009)CrossRefGoogle Scholar
  20. 20.
    A.K. Yadav, C.R. Gautam, Successive relaxor ferroelectric behavior in La modified (Ba, Sr)TiO3 borosilicate glass ceramics. J. Mater. Sci.: Mater. Electron. 25(8), 3532–3536 (2014)Google Scholar
  21. 21.
    X.G. Tang, K.H. Chew, H.L.W. Chan, Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics. Acta Mater. 52(17), 5177–5183 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Environment Functional Materials of Tangshan City, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and EngineeringNorth China University of Science and TechnologyTangshanChina

Personalised recommendations