Advertisement

Electrochemical deposition of layer-by-layer Ni/RGO/Ni(OH)2 composite on steel gauze electrode for high-performance supercapacitor application

  • Parviz NorouziEmail author
  • Ahmad Karimpour
  • Mohammad Reza Ganjali
Article
  • 9 Downloads

Abstract

In this paper, layer-by-layer Ni/RGO/Ni(OH)2 composite was synthesized on the steel gauze (SG) electrode via cathodic electrodeposition. Two electrodes system was selected for electrodeposition in the galvanostatic condition. Electrodeposition of the first layer of nickel was conducted in the electrochemical cell with an SG substrate as a cathode. This electrode was fixed between two parallel graphite anodes and electrodeposition was performed from a mixture of NiCl2, NH4Cl, and NaCl solution. Co-electrodeposition of the reduced graphene oxide (RGO) with Ni(OH)2 (as the second layer) on the Ni layer formed in the first step, was carried out in the same way from a solution containing graphene oxide (GO) and Ni(NO3)2 and finally SG/Ni/RGO/Ni(OH)2 electrode was prepared. XRD, FT-IR, BET, and SEM techniques were used for characterization of the composite. The results showed that the formation of high surface area layer by layer Ni/RGO/Ni(OH)2 structure in which, Ni(OH)2 is in beta form. For evaluation of the electrochemical performance of the prepared electrode, electrochemical techniques such as cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) were used. The SG/Ni/RGO/Ni(OH)2 electrode demonstrated high specific capacity (1430 C g−1 at the scan rate of 5 mV s−1) and excellent cycling ability (5.7% capacity decay at the current density of 50 A g−1 after 3000 cycles).

Notes

Acknowledgements

This work was supported by Grants (NO# 3463764-231) from the research council of the University of Tehran, which is at this moment, gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict.

References

  1. 1.
    W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Nano Energy 52, 441 (2018)Google Scholar
  2. 2.
    D.D.L. Chung, Appl. Energy 231, 89 (2018)Google Scholar
  3. 3.
    C. Liu, F. Li, M. Lai-Peng, H.M. Cheng, Adv. Mater. 22, 28 (2010)Google Scholar
  4. 4.
    J. Xu, X. Wang, B. Liang, Q. Wang, G. Shen, Q. Xiang, D. Chen, ACS Nano 7, 5453 (2013)Google Scholar
  5. 5.
    X. Wu, S. Yao, Nano Energy 42, 143 (2017)Google Scholar
  6. 6.
    D. Zhao, F. Hu, A. Umar, X. Wu, New J. Chem. 42, 7399 (2018)Google Scholar
  7. 7.
    D. Zhao, M. Dai, H. Liu, L. Xiao, X. Wu, H. Xia, Cryst. Growth Des. 19, 1921 (2019)Google Scholar
  8. 8.
    D. Zhao, H. Liu, X. Wu, Nano Energy 57, 363 (2019)Google Scholar
  9. 9.
    M. Aghazadeh, I. Karimzadeh, A. Ahmadi, M.R. Ganjali, J. Mater. Sci. 29, 14567 (2018)Google Scholar
  10. 10.
    M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-Warthan, W. Tremel, J. Mater. Chem. A 3, 18753 (2015)Google Scholar
  11. 11.
    T. Yin, W. Zhang, Y. Yin, Y. Yan, K. Zhan, J. Yang, B. Zhao, J. Mater. Sci. 28, 7884 (2017)Google Scholar
  12. 12.
    M. Li, Y. Zhang, L. Yang, Y. Liu, J. Ma, J. Mater. Sci. 26, 485 (2014)Google Scholar
  13. 13.
    X. Wu, Z. Han, X. Zheng, S. Yao, X. Yang, T. Zhai, Nano Energy 31, 410 (2017)Google Scholar
  14. 14.
    D. Zhao, X. Wu, C. Guo, Inorg. Chem. Front. 5, 1378 (2018)Google Scholar
  15. 15.
    D.S. Hall, D.J. Lockwood, C. Bock, B.R. Macdougall, D.J. Lockwood, Proc. R. Soc. A (2014).  https://doi.org/10.1098/rspa.2014.0792 Google Scholar
  16. 16.
    F. Shi, L. Li, X.L. Wang, C.D. Gu, J.P. Tu, RSC Adv. 4, 41910 (2014)Google Scholar
  17. 17.
    W. Lan, G. Tang, Y. Sun, Y. Wei, P. La, Q. Su, E. Xie, J. Mater. Sci. 27, 2741 (2016)Google Scholar
  18. 18.
    J. Yuan, S. Tang, Z. Zhu, X. Qin, R. Qu, Y. Deng, L. Wu, J. Li, G.M. Haarberg, J. Mater. Sci. 28, 18022 (2017)Google Scholar
  19. 19.
    H. Yan, J. Bai, J. Wang, X. Zhang, B. Wang, Q. Liu, L. Liu, CrystEngComm 15, 10007 (2013)Google Scholar
  20. 20.
    P. Shen, H. Zhang, S. Zhang, L. Fei, Appl. Surf. Sci. 460, 65 (2018)Google Scholar
  21. 21.
    M.S. Wu, J.F. Wu, J. Power Sour. 240, 397 (2013)Google Scholar
  22. 22.
    N.A. Alhebshi, R.B. Rakhi, H.N. Alshareef, J. Mater. Chem. A 1, 14897 (2013)Google Scholar
  23. 23.
    K. Chaitra, N. Nagaraju, K. Nagaraju, Mater. Chem. Phys. 164, 98 (2015)Google Scholar
  24. 24.
    M. Aghazadeh, J. Mater. Sci. 28, 3108 (2017)Google Scholar
  25. 25.
    Y.Z. Su, K. Xiao, N. Li, Z.Q. Liu, S.Z. Qiao, J. Mater. Chem. A 2, 13845 (2014)Google Scholar
  26. 26.
    H. Ma, J. He, D.B. Xiong, J. Wu, Q. Li, V. Dravid, Y. Zhao, ACS Appl. Mater. Interfaces 8, 1992 (2016)Google Scholar
  27. 27.
    X.H. Xiong, Z.X. Wang, H.J. Guo, X.H. Li, Mater. Lett. 138, 5 (2015)Google Scholar
  28. 28.
    X. Zang, C. Sun, Z. Dai, J. Yang, X. Dong, J. Alloys Compd. 691, 144 (2017)Google Scholar
  29. 29.
    X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang, M. Liu, Nano Energy 11, 154 (2015)Google Scholar
  30. 30.
    Y. Ma, W. Chen, P. Zhang, F. Teng, J. Zhou, X. Pan, E. Xie, RSC Adv. 4, 47609 (2014)Google Scholar
  31. 31.
    D. Zhang, Mater. Res. Innov. 19, 375 (2015)Google Scholar
  32. 32.
    U. Singh, A. Banerjee, D. Mhamane, A. Suryawanshi, K.K. Upadhyay, S. Ogale, RSC Adv. 4, 39875 (2014)Google Scholar
  33. 33.
    Y. Qi, Y. Liu, R. Zhu, Q. Wang, Y. Luo, C. Zhu, Y. Lyu, New J. Chem. 43, 3091 (2019)Google Scholar
  34. 34.
    Y.F. Yuan, X.H. Xia, J.B. Wu, J.L. Yang, Y.B. Chen, S.Y. Guo, Electrochim. Acta 56, 2627 (2011)Google Scholar
  35. 35.
    X. Dai, D. Chen, H. Fan, Y. Zhong, L. Chang, H. Shao, J. Wang, J. Zhang, C.N. Cao, Electrochim. Acta 154, 128 (2015)Google Scholar
  36. 36.
    A. Karimpour, P. Norouzi, M.R. Ganjali, J. Nanosci. Nanotechnol. 19, 7330 (2019)Google Scholar
  37. 37.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)Google Scholar
  38. 38.
    N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinskiy, Chem. Mater. 11, 771 (1999)Google Scholar
  39. 39.
    M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, J. Solid State Electrochem. 18, 1569 (2014)Google Scholar
  40. 40.
    M. Aghazadeh, A.N. Golikand, M. Ghaemi, Int. J. Hydrog. Energy 36, 8674 (2011)Google Scholar
  41. 41.
    M. Aghazadeh, Anal. Bioanal. Electrochem. 11, 211 (2019)Google Scholar
  42. 42.
    S.A. Rahimi, P. Norouzi, M.R. Ganjali, RSC Adv. 8, 26818 (2018)Google Scholar
  43. 43.
    M. Aghazadeh, B. Sabour, M.R. Ganjali, S. Dalvand, Appl. Surf. Sci. 313, 581 (2014)Google Scholar
  44. 44.
    J. Tizfahm, B. Safibonab, M. Aghazadeh, A. Majdabadi, B. Sabour, S. Dalvand, Colloids Surf. A 443, 544 (2014)Google Scholar
  45. 45.
    B. Zhao, T. Wang, L. Jiang, K. Zhang, M.M.F. Yuen, J. BinXu, X.Z. Fu, R. Sun, C.P. Wong, Electrochim. Acta 192, 205 (2016)Google Scholar
  46. 46.
    P. Hermet, L. Gourrier, J.L. Bantignies, D. Ravot, T. Michel, S. Deabate, P. Boulet, F. Henn, Phys. Rev. B 84, 1 (2011)Google Scholar
  47. 47.
    G.L. Aranovich, M.D. Donohue, J. Colloid Interface Sci. 205, 121 (1998)Google Scholar
  48. 48.
    Y.Y. Xi, D. Li, A.B. Djurišić, M.H. Xie, K.Y.K. Man, W.K. Chan, Electrochem. Solid-State Lett. 11, D56 (2008)Google Scholar
  49. 49.
    T. Brousse, D. Bélanger, J.W. Long, J. Electrochem. Soc. 162, A5185 (2015)Google Scholar
  50. 50.
    J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)Google Scholar
  51. 51.
    B. Dong, H. Zhou, J. Liang, L. Zhang, G. Gao, S. Ding, Nanotechnology (2014).  https://doi.org/10.1088/0957-4484/25/43/435403 Google Scholar
  52. 52.
    H. Chai, X. Peng, T. Liu, X. Su, D. Jia, W. Zhou, RSC Adv. 7, 36617 (2017)Google Scholar
  53. 53.
    W. Ma, L. Wang, Y. Li, M. Shi, H. Cui, Adv. Powder Technol. 29, 631 (2018)Google Scholar
  54. 54.
    M. Liu, J. Chang, J. Sun, L. Gao, RSC Adv. 3, 8003 (2013)Google Scholar
  55. 55.
    Y.Y. Yang, Z.A. Hu, Z.Y. Zhang, F.H. Zhang, Y.J. Zhang, P.J. Liang, H.Y. Zhang, H.Y. Wu, Mater. Chem. Phys. 133, 363 (2012)Google Scholar
  56. 56.
    L. Wang, X. Li, T. Guo, X. Yan, B.K. Tay, Int. J. Hydrog. Energy 39, 7876 (2014)Google Scholar
  57. 57.
    X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Chem. Eur. J. 17, 10898 (2011)Google Scholar
  58. 58.
    Q. Li, Q. Wei, L. Xie, C. Chen, C. Lu, F.Y. Su, P. Zhou, RSC Adv. 6, 46548 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center of Excellence in Electrochemistry, Faculty of ChemistryUniversity of TehranTehranIran
  2. 2.Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations