Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16156–16173 | Cite as

Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation

  • Abdulmohsen Ali AlshehriEmail author
  • Maqsood Ahmad Malik
Article
  • 50 Downloads

Abstract

The biosynthesis is an eco-friendly, reliable, sustainable protocol for preparing nanomaterials where use of natural, biodegradable, non-toxic and safe reagents takes place. In the present work, an efficient, facile and eco-friendly approach has been used for the synthesis of zinc oxide nanoparticles (ZnO-NPs) using Trigonella foenum-graecum (Fenugreek) aqueous seed extract as bio-reducing agents and capping agent, thus eradicating the requirement of conventional reducing agents. Different characterization techniques like UV–Vis spectroscopy, UV–Visible diffuse reflectance spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy, photoluminescence (PL) study and energy dispersive X-ray were employed for confirmation of optical properties, shape, size, surface structure, crystalline nature and elemental proportions of the biogenic ZnO-NPs. FTIR analysis confirms the active role of bioactive phytochemical constituents present in the Trigonella foenum-graecum aqueous seed extract. XRD analyses of the as prepared ZnO-NPs are crystalline in nature and have no other impurity phase. UV–Vis spectral data suggested optical band gap energy of 2.97 eV for biosynthesized ZnO-NPs showing their small size owing to quantum confinement. UV–Vis spectra of ZnO-NPs show the characteristic absorption band at 364 nm, which can be assigned to the intrinsic band gap absorption of ZnO-NPs because of the electron transitions from the valence band to the conduction band. In addition, the efficacy of biosynthesized ZnO-NPs to act as highly efficient photocatalyst for methylene blue (MB) dye degradation under UV-light under different experimental conditions was confirmed in this study. The effect of initial dye concentration, ZnO photocatalyst dosage and the reusability tests were investigated. Improved photocatalytic behavior was discussed and influence of active species was further investigated using hydroxyl radical (OH), superoxide anions (O2) and hole (h+) scavengers to explain the possible mechanism of the photocatalytic MB dye degradation under UV light irradiation.

Notes

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (G:394-130-38). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

References

  1. 1.
    T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77, 247–255 (2001)CrossRefGoogle Scholar
  2. 2.
    A.B. Djurišić, Y.H. Leung, A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater. Horiz. 1, 400–410 (2014)CrossRefGoogle Scholar
  3. 3.
    S.A. Khan, S. Shahid, M. Nazir, S. Kanwal, S. Zaman, M.N. Sarwar, S.M. Haroon, Efficient template based synthesis of Ni nanorods by etching porous alumina for their enhanced photocatalytic activities against Methyl Red and Methyl Orange dyes. J. Mol. Struct. 1184, 316–323 (2019)CrossRefGoogle Scholar
  4. 4.
    A. Ameta, R. Ameta, M. Ahuja, Photocatalytic degradation of methylene blue over ferric tungstate. Sci. Rev. Chem. Commun. 3, 172–180 (2013)Google Scholar
  5. 5.
    K. Atul, C. Pratibha, V. Poonam, A comparative study on the treatment methods of textile dye effluents. J. Chem. Pharm. Res. 4, 763–771 (2012)Google Scholar
  6. 6.
    B.S. Al Balushi, F. Al Marzouqi, B. Al Wahaibi, A.T. Kuvarega, S.M. Al Kindy, Y. Kim, R. Selvaraj, Hydrothermal synthesis of CdS sub-microspheres for photocatalytic degradation of pharmaceuticals. Appl. Surf. Sci. 457, 559–565 (2018)CrossRefGoogle Scholar
  7. 7.
    J. Kavil, A. Alshahrie, P. Periyat, CdS sensitized TiO2 nano heterostructures as sunlight driven photocatalyst. Nano-Struct. Nano-Objects 16, 24–30 (2018)CrossRefGoogle Scholar
  8. 8.
    J. Thiebaud, A. Parker, C. Fittschen, G. Vincent, O. Zahraa, P.-M. Marquaire, Detection of HO2 radicals in the photocatalytic oxidation of methyl ethyl ketone. J. Phys. Chem. C 112, 2239–2243 (2008)CrossRefGoogle Scholar
  9. 9.
    R. Wahab, F. Khan, R. Singh, N.K. Kaushik, J. Ahmad, M.A. Siddiqui, Q. Saquib, B.A. Ali, S.T. Khan, J. Musarrat, Utilization of photocatalytic ZnO nanoparticles for deactivation of safranine dye and their applications for statistical analysis. Physica E 69, 101–108 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108, 1–35 (1997)CrossRefGoogle Scholar
  11. 11.
    B.S. Reddy, V. Krishna, K. Ravindhranath, Removal of methylene blue dye from waste waters using new bio-sorbents derived from Annona squamosa and Azadirachta indica plants. J. Chem. Pharm. Res. 4, 4682–4694 (2012)Google Scholar
  12. 12.
    M. Gancheva, M. Markova-Velichkova, G. Atanasova, D. Kovacheva, I. Uzunov, R. Cukeva, Design and photocatalytic activity of nanosized zinc oxides. Appl. Surf. Sci. 368, 258–266 (2016)CrossRefGoogle Scholar
  13. 13.
    N.R. Yogamalar, A.C. Bose, Synthesis, dopant study and device fabrication of zinc oxide nanostructures: mini review. Prog. Nanotechnol. Nanomater. 2, 1–20 (2013)Google Scholar
  14. 14.
    S. Baruah, S.S. Sinha, B. Ghosh, S.K. Pal, A. Raychaudhuri, J. Dutta, Photoreactivity of ZnO nanoparticles in visible light: Effect of surface states on electron transfer reaction. J. Appl. Phys. 105(074308), 1–6 (2009)Google Scholar
  15. 15.
    A. Kajbafvala, J.P. Samberg, H. Ghorbani, E. Kajbafvala, S. Sadrnezhaad, Effects of initial precursor and microwave irradiation on step-by-step synthesis of zinc oxide nano-architectures. Mater. Lett. 67, 342–345 (2012)CrossRefGoogle Scholar
  16. 16.
    S.K. Chaudhuri, L. Malodia, Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: characterization and its evaluation on tree seedling growth in nursery stage. Appl. Nanosci. 7, 501–512 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Yedurkar, C. Maurya, P. Mahanwar, Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach. Open J. Synth. 5, 1 (2016)Google Scholar
  18. 18.
    S. Chakrabarti, B.K. Dutta, Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Hazard. Mater. 112, 269–278 (2004)CrossRefGoogle Scholar
  19. 19.
    F. Amano, E. Ishinaga, A. Yamakata, Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. J. Phys. Chem. C 117, 22584–22590 (2013)CrossRefGoogle Scholar
  20. 20.
    J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin. Drug Deliv. 7, 1063–1077 (2010)CrossRefGoogle Scholar
  21. 21.
    X. Bai, L. Li, H. Liu, L. Tan, T. Liu, X. Meng, Solvothermal synthesis of ZnO nanoparticles and anti-infection application in vivo. ACS Appl. Mater. Interfaces. 7, 1308–1317 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Moritz, M. Geszke-Moritz, The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J. 228, 596–613 (2013)CrossRefGoogle Scholar
  23. 23.
    A.K. Zak, W.A. Majid, M. Darroudi, R. Yousefi, Synthesis and characterization of ZnO nanoparticles prepared in gelatin media. Mater. Lett. 65, 70–73 (2011)CrossRefGoogle Scholar
  24. 24.
    F. Bigdeli, A. Morsali, Synthesis ZnO nanoparticles from a new Zinc (II) coordination polymer precursor. Mater. Lett. 64, 4–5 (2010)CrossRefGoogle Scholar
  25. 25.
    A.K. Zak, W.A. Majid, M. Mahmoudian, M. Darroudi, R. Yousefi, Starch-stabilized synthesis of ZnO nanopowders at low temperature and optical properties study. Adv. Powder Technol. 24, 618–624 (2013)CrossRefGoogle Scholar
  26. 26.
    P. Jajarmi, Fabrication of pure ZnO nanoparticles by polymerization method. Mater. Lett. 63, 2646–2648 (2009)CrossRefGoogle Scholar
  27. 27.
    R. Razali, A.K. Zak, W.A. Majid, M. Darroudi, Solvothermal synthesis of microsphere ZnO nanostructures in DEA media. Ceram. Int. 37, 3657–3663 (2011)CrossRefGoogle Scholar
  28. 28.
    Q. Li, Z. Kang, B. Mao, E. Wang, C. Wang, C. Tian, S. Li, One-step polyoxometalate-assisted solvothermal synthesis of ZnO microspheres and their photoluminescence properties. Mater. Lett. 62, 2531–2534 (2008)CrossRefGoogle Scholar
  29. 29.
    H. Xu, H. Wang, Y. Zhang, W. He, M. Zhu, B. Wang, H. Yan, Hydrothermal synthesis of zinc oxide powders with controllable morphology. Ceram. Int. 30, 93–97 (2004)CrossRefGoogle Scholar
  30. 30.
    C. Deng, H. Hu, G. Shao, C. Han, Facile template-free sonochemical fabrication of hollow ZnO spherical structures. Mater. Lett. 64, 852–855 (2010)CrossRefGoogle Scholar
  31. 31.
    A.K. Zak, H. Wang, R. Yousefi, A.M. Golsheikh, Z. Ren, Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason. Sonochem. 20, 395–400 (2013)CrossRefGoogle Scholar
  32. 32.
    C.-L. Kuo, C.-L. Wang, H.-H. Ko, W.-S. Hwang, K.-M. Chang, W.-L. Li, H.-H. Huang, Y.-H. Chang, M.-C. Wang, Synthesis of zinc oxide nanocrystalline powders for cosmetic applications. Ceram. Int. 36, 693–698 (2010)CrossRefGoogle Scholar
  33. 33.
    R. Song, Y. Liu, L. He, Synthesis and characterization of mercaptoacetic acid-modified ZnO nanoparticles. Solid State Sci. 10, 1563–1567 (2008)CrossRefGoogle Scholar
  34. 34.
    R. Zamiri, A. Zakaria, H.A. Ahangar, M. Darroudi, A.K. Zak, G.P. Drummen, Aqueous starch as a stabilizer in zinc oxide nanoparticle synthesis via laser ablation. J. Alloys Compd. 516, 41–48 (2012)CrossRefGoogle Scholar
  35. 35.
    N. Ngoepe, Z. Mbita, M. Mathipa, N. Mketo, B. Ntsendwana, N. Hintsho-Mbita, Biogenic synthesis of ZnO nanoparticles using Monsonia burkeana for use in photocatalytic, antibacterial and anticancer applications. Ceram. Int. 44, 16999–17006 (2018)CrossRefGoogle Scholar
  36. 36.
    V.V. Kadam, J.P. Ettiyappan, R.M. Balakrishnan, Mechanistic insight into the endophytic fungus mediated synthesis of protein capped ZnO nanoparticles. Mater. Sci. Eng. B 243, 214–221 (2019)CrossRefGoogle Scholar
  37. 37.
    K. Raja, R. Sowmya, R. Sudhagar, P.S. Moorthy, K. Govindaraju, K. Subramanian, Biogenic ZnO and Cu nanoparticles to improve seed germination quality in blackgram (Vigna mungo). Mater. Lett. 235, 164–167 (2019)CrossRefGoogle Scholar
  38. 38.
    N. Jayarambabu, K.V. Rao, V. Rajendar, Biogenic synthesis, characterization, acute oral toxicity studies of synthesized Ag and ZnO nanoparticles using aqueous extract of Lawsonia inermis. Mater. Lett. 211, 43–47 (2018)CrossRefGoogle Scholar
  39. 39.
    M. Khatami, R.S. Varma, N. Zafarnia, H. Yaghoobi, M. Sarani, V.G. Kumar, Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain. Chem. Pharm. 10, 9–15 (2018)CrossRefGoogle Scholar
  40. 40.
    G. Sharmila, M. Thirumarimurugan, C. Muthukumaran, Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem. J. 145, 578–587 (2019)CrossRefGoogle Scholar
  41. 41.
    M. Ganesh, S.G. Lee, J. Jayaprakash, M. Mohankumar, H.T. Jang, Hydnocarpus alpina Wt extract mediated green synthesis of ZnO nanoparticle and screening of its anti-microbial, free radical scavenging, and photocatalytic activity. Biocatal. Agric. Biotechnol. 19, 101129 (2019)CrossRefGoogle Scholar
  42. 42.
    P. Luque, C. Soto-Robles, O. Nava, C. Gomez-Gutierrez, A. Castro-Beltran, H. Garrafa-Galvez, A. Vilchis-Nestor, A. Olivas, Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract. J. Mater. Sci.: Mater. Electron. 29, 9764–9770 (2018)Google Scholar
  43. 43.
    T. Lakshmeesha, M. Sateesh, B.D. Prasad, S. Sharma, D. Kavyashree, M. Chandrasekhar, H. Nagabhushana, Reactivity of crystalline ZnO superstructures against fungi and bacterial pathogens: synthesized using Nerium oleander leaf extract. Cryst. Growth Des. 14, 4068–4079 (2014)CrossRefGoogle Scholar
  44. 44.
    M.S. Akhtar, J. Panwar, Y.-S. Yun, Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain. Chem. Eng. 1, 591–602 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Miri, M. Sarani, Biosynthesis and cytotoxic study of synthesized zinc oxide nanoparticles using Salvadora persica. BioNanoScience 9, 164–171 (2019)CrossRefGoogle Scholar
  46. 46.
    I. Fatimah, R.Y. Pradita, A. Nurfalinda, Plant extract mediated of ZnO nanoparticles by using ethanol extract of Mimosa pudica leaves and coffee powder. Procedia Eng. 148, 43–48 (2016)CrossRefGoogle Scholar
  47. 47.
    P. Kuppusamy, M.M. Yusoff, G.P. Maniam, N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—an updated report. Saudi Pharm. J. 24, 473–484 (2016)CrossRefGoogle Scholar
  48. 48.
    R.G. Saratale, G.D. Saratale, H.S. Shin, J.M. Jacob, A. Pugazhendhi, M. Bhaisare, G. Kumar, New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ. Sci. Pollut. Res. 25, 10164–10183 (2018)CrossRefGoogle Scholar
  49. 49.
    M. Ramesh, M. Anbuvannan, G. Viruthagiri, Green synthesis of ZnO nanoparticles using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta A 136, 864–870 (2015)CrossRefGoogle Scholar
  50. 50.
    R. Dobrucka, J. Długaszewska, Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi J. Bio. Sci. 23, 517–523 (2016)CrossRefGoogle Scholar
  51. 51.
    P. Gourav, S.H. Hasan, Green synthesis of gold nanoparticles using Tamarindus indica extract as a bioreductant. Innov. Corros. Mater. Sci. (Former. Recent Pat. Corros. Sci.) 5, 93–97 (2015)Google Scholar
  52. 52.
    N. Thovhogi, A. Diallo, A. Gurib-Fakim, M. Maaza, Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: main physical properties. J. Alloy. Compd. 647, 392–396 (2015)CrossRefGoogle Scholar
  53. 53.
    R.K. Das, P. Sharma, P. Nahar, U. Bora, Synthesis of gold nanoparticles using aqueous extract of Calotropis procera latex. Mater. Lett. 65, 610–613 (2011)CrossRefGoogle Scholar
  54. 54.
    D. Philip, C. Unni, S.A. Aromal, V. Vidhu, Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim. Acta A 78, 899–904 (2011)CrossRefGoogle Scholar
  55. 55.
    L. Christensen, S. Vivekanandhan, M. Misra, A.K. Mohanty, Biosynthesis of silver nanoparticles using Murraya koenigii (curry leaf): an investigation on the effect of broth concentration in reduction mechanism and particle size. Adv. Mater. Lett. 2, 429–434 (2011)CrossRefGoogle Scholar
  56. 56.
    M.C. Moulton, L.K. Braydich-Stolle, M.N. Nadagouda, S. Kunzelman, S.M. Hussain, R.S. Varma, Synthesis, characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2, 763–770 (2010)CrossRefGoogle Scholar
  57. 57.
    V. Sanna, N. Pala, G. Dessì, P. Manconi, A. Mariani, S. Dedola, M. Rassu, C. Crosio, C. Iaccarino, M. Sechi, Single-step green synthesis and characterization of gold-conjugated polyphenol nanoparticles with antioxidant and biological activities. Int. J. Nanomed. 9, 4935–4951 (2014)Google Scholar
  58. 58.
    V. Nolasco-Arizmendi, R. Morales-Luckie, V. Sánchez-Mendieta, J. Hinestroza, E. Castro-Longoria, A.R. Vilchis-Nestor, Formation of silk–gold nanocomposite fabric using grapefruit aqueous extract. Text. Res. J. 83, 1229–1235 (2013)CrossRefGoogle Scholar
  59. 59.
    A. Alshehri, M.A. Malik, Z. Khan, S.A. Al-Thabaiti, N. Hasan, Biofabrication of Fe nanoparticles in aqueous extract of Hibiscus sabdariffa with enhanced photocatalytic activities. RSC Adv. 7, 25149–25159 (2017)CrossRefGoogle Scholar
  60. 60.
    I.A. Radini, N. Hasan, M.A. Malik, Z. Khan, Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. J. Photochem. Photobiol. 183, 154–163 (2018)CrossRefGoogle Scholar
  61. 61.
    G. Marslin, K. Siram, Q. Maqbool, R. Selvakesavan, D. Kruszka, P. Kachlicki, G. Franklin, Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11, 940 (2018)CrossRefGoogle Scholar
  62. 62.
    D. Suresh, P. Nethravathi, H. Rajanaika, H. Nagabhushana, S. Sharma, Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process. 31, 446–454 (2015)CrossRefGoogle Scholar
  63. 63.
    Q. Jiang, Z.Y. Wu, Y.M. Wang, Y. Cao, C.F. Zhou, J.H. Zhu, Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J. Mater. Chem. 16, 1536–1542 (2006)CrossRefGoogle Scholar
  64. 64.
    S. Sarkar, A. Makhal, T. Bora, S. Baruah, J. Dutta, S.K. Pal, Photoselective excited state dynamics in ZnO–Au nanocomposites and their implications in photocatalysis and dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 12488–12496 (2011)CrossRefGoogle Scholar
  65. 65.
    A.M. Tayeb, M.A. Tony, E.K. Ismaeel, Engineered nanostructured ZnO for water remediation: operational parameters effect, Box-Behnken design optimization and kinetic determinations. Appl. Water Sci. 9, 43 (2019)CrossRefGoogle Scholar
  66. 66.
    S. Kapatel, C. Sumesh, Two-step facile preparation of MoS2·ZnO nanocomposite as efficient photocatalyst for methylene blue (dye) degradation. Electron. Mater. Lett. 15, 119–132 (2019)CrossRefGoogle Scholar
  67. 67.
    A. Balcha, O.P. Yadav, T. Dey, Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol–gel methods. Environ. Sci. Pollut. Res. 23, 25485–25493 (2016)CrossRefGoogle Scholar
  68. 68.
    M. Irani, T. Mohammadi, S. Mohebbi, Photocatalytic degradation of methylene blue with ZnO nanoparticles; a joint experimental and theoretical study. J. Mex. Chem. Soc. 60, 218–225 (2016)Google Scholar
  69. 69.
    G.N. Udayabhanu, H. Nagabhushana, R. Basavaraj, G. Raghu, D. Suresh, H. Rajanaika, S. Sharma, Green, non-chemical route for the synthesis of ZnO superstructures, evaluation of its applications towards photocatalysis, photoluminescence and bio-sensing. Cryst. Growth Des. 16, 6828–6840 (2016)CrossRefGoogle Scholar
  70. 70.
    N.M. Flores, U. Pal, R. Galeazzi, A. Sandoval, Effects of morphology, surface area, and defect content on the photocatalytic dye degradation performance of ZnO nanostructures. RSC Adv. 4, 41099–41110 (2014)CrossRefGoogle Scholar
  71. 71.
    S. Payra, S. Challagulla, Y. Bobde, C. Chakraborty, B. Ghosh, S. Roy, Probing the photo-and electro-catalytic degradation mechanism of methylene blue dye over ZIF-derived ZnO. J. Hazard. Mater. 373, 377–388 (2019)CrossRefGoogle Scholar
  72. 72.
    A.M. Cahino, R.G. Loureiro, J. Dantas, V.S. Madeira, P.C.R. Fernandes, Characterization and evaluation of ZnO/CuO catalyst in the degradation of methylene blue using solar radiation. Ceram. Int. 45, 13628–13636 (2019)CrossRefGoogle Scholar
  73. 73.
    L.A. Chanu, W.J. Singh, K.J. Singh, K.N. Devi, Effect of operational parameters on the photocatalytic degradation of methylene blue dye solution using manganese doped ZnO nanoparticles. Results Phys. 12, 1230–1237 (2019)CrossRefGoogle Scholar
  74. 74.
    J. Lu, H. Ali, J. Hurh, Y. Han, I. Batjikh, E.J. Rupa, G. Anandapadmanaban, J.K. Park, D.-C. Yang, The assessment of photocatalytic activity of zinc oxide nanoparticles from the roots of Codonopsis lanceolata synthesized by one-pot green synthesis method. Optik 184, 82–89 (2019)CrossRefGoogle Scholar
  75. 75.
    J.F. Li, E.J. Rupa, J. Hurh, Y. Huo, L. Chen, Y. Han, J. Chan Ahn, J.K. Park, H.A. Lee, R. Mathiyalagan, Cordyceps militaris fungus mediated zinc oxide nanoparticles for the photocatalytic degradation of methylene blue dye. Optik 183, 691–697 (2019)CrossRefGoogle Scholar
  76. 76.
    J. Lu, I. Batjikh, J. Hurh, Y. Han, H. Ali, R. Mathiyalagan, C. Ling, J.C. Ahn, D.C. Yang, Photocatalytic degradation of methylene blue using biosynthesized zinc oxide nanoparticles from bark extract of Kalopanax septemlobus. Optik 182, 980–985 (2019)CrossRefGoogle Scholar
  77. 77.
    R.M. Kakhki, R. Tayebee, F. Ahsani, New and highly efficient Ag doped ZnO visible nano photocatalyst for removing of methylene blue. J. Mater. Sci.: Mater. Electron. 28, 5941–5952 (2017)Google Scholar
  78. 78.
    R.M. Kakhki, F. Ahsani, New and effective ZnO and Zn3 (VO4)2 visible nano photocatalysts with enhanced photocatalytic performance. J. Mater. Sci.: Mater. Electron. 29, 3767–3774 (2018)Google Scholar
  79. 79.
    N. Daneshvar, D. Salari, A. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. 162, 317–322 (2004)CrossRefGoogle Scholar
  80. 80.
    L. Zhang, H. Cheng, R. Zong, Y. Zhu, Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity. J. Phys. Chem. C 113, 2368–2374 (2009)CrossRefGoogle Scholar
  81. 81.
    M. Ahmad, E. Ahmed, Z. Hong, W. Ahmed, A. Elhissi, N. Khalid, Photocatalytic, sonocatalytic and sonophotocatalytic degradation of rhodamine B using ZnO/CNTs composites photocatalysts. Ultrason. Sonochem. 21, 761–773 (2014)CrossRefGoogle Scholar
  82. 82.
    Z. Youssef, L. Colombeau, N. Yesmurzayeva, F. Baros, R. Vanderesse, T. Hamieh, J. Toufaily, C. Frochot, T. Roques-Carmes, S. Acherar, Dye-sensitized nanoparticles for heterogeneous photocatalysis: cases studies with TiO2, ZnO, fullerene and graphene for water purification. Dyes Pigments. 159, 49–71 (2018)CrossRefGoogle Scholar
  83. 83.
    H. Hossaini, G. Moussavi, M. Farrokhi, Oxidation of diazinon in cns-ZnO/LED photocatalytic process: catalyst preparation, photocatalytic examination, and toxicity bioassay of oxidation by-products. Sep. Purif. Technol. 174, 320–330 (2017)CrossRefGoogle Scholar
  84. 84.
    P.K. Dutta, S. Pehkonen, V.K. Sharma, A.K. Ray, Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ. Sci. Technol. 39, 1827–1834 (2005)CrossRefGoogle Scholar
  85. 85.
    W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Novel approach to enhance photosensitized degradation of rhodamine B under visible light irradiation by the ZnxCd1−xS/TiO2 nanocomposites. Environ. Sci. Technol. 45, 2987–2993 (2011)CrossRefGoogle Scholar
  86. 86.
    X. Chen, Z. Wu, D. Liu, Z. Gao, Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes. Nanoscale Res. Lett. 12, 143 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Abdulmohsen Ali Alshehri
    • 1
    Email author
  • Maqsood Ahmad Malik
    • 1
  1. 1.Chemistry Department, Faculty of SciencesKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations