Advertisement

Supercapacitor behavior and characterization of RGO anchored V2O5 nanorods

  • D. GovindarajanEmail author
  • V. Uma Shankar
  • R. Gopalakrishnan
Article
  • 18 Downloads

Abstract

Reduced graphene oxide (RGO) anchored vanadium pentoxide (V2O5) nanorods have been synthesized by using simple and cost efficacious sol–gel method. The prepared sample was analyzed by different physical and electrochemical techniques such as TG/DTA, XRD, XPS, FTIR, Micro-Raman, FESEM, HRTEM and cyclic voltammetry and galvanostatic charge/discharge. The electrochemical characterization shows that all the curves exhibit quasi-rectangular shape with redox peak, which indicates the pseudocapacitance nature of the V2O5 and RGO/V2O5 electrode materials. V2O5 electrode material exhibits the high specific capacitance (112 F/g) at low scan rate (10 mV/s) due to high surface area. The RGO/V2O5 electrode material exhibits two folds greater specific capacitance values (218.4 F/g at 10 mV/s) than pure V2O5 electrode material. This result clearly indicates the pseudocapacitance nature was enhanced by the RGO nanosheets. The GCD curve also reveals the RGO/V2O5 electrode has good charge/discharge time and superior specific capacitance than bare V2O5 electrode. These excellent electrochemical activities may credit due to RGO nanosheets, which induce large transfer of electrons and also provides high surface sites and short transport path length for the diffusion of electrolyte ions.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    C.K. Ranaweera, Z. Wang, E. Alaqurashi, P.K. Kahol, P.R. Dvornic, B.K. Gupta, K. Ramasamy, A.D. Mohite, G. Gupta, R.K. Gupta, Highly stable hollow bifunctional cobalt sulfides for flexible supercapacitor and hydrogen evolution. J. Mater. Chem. 4, 9014–9018 (2016)CrossRefGoogle Scholar
  2. 2.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Ramadoss, B. Saravanakumar, S.J. Kim, Vanadium Pentoxide/Reduced Graphene Oxide Composite as an Efficient Electrode Material for High-Performance Supercapacitors and Self-Powered Systems. Energy Technol. 3, 913–924 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Liu, K. Vijaya Sankar, A. Kundu, M. Ma, J.-Y. Kwon, S.C. Jun, Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. Appl. Mater. Interfaces 9, 21829–21838 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, Y. Zhai, Preparation of Y-doped ZrO2 coatings on MnO2 electrodes and their effect on electrochemical performance for MnO2 electrochemical supercapacitor. RSC Adv. 6, 1750–1759 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Lu, D. Zheng, T. Zhai, Z. Liu, Y. Huang, S. Xie, Y. Tong, Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ. Sci. 4, 2915–2921 (2011)CrossRefGoogle Scholar
  7. 7.
    W.C. Chen, C.C. Hu, C.C. Wang, C.K. Min, Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors. J. Power Sources 125, 292–298 (2004)CrossRefGoogle Scholar
  8. 8.
    Y.-T. Kim, K. Tadai, T. Mitani, Highly dispersed ruthenium oxide nanoparticles on carboxylated carbon nanotubes for supercapacitor electrode materials. J. Mater. Chem. 15, 4914–4921 (2005)CrossRefGoogle Scholar
  9. 9.
    Y.-T. Wang, A.-H. Lu, H.-L. Zhang, W.-C. Li, Synthesis of nanostructured mesoporous manganese oxides with three-dimensional frameworks and their application in supercapacitors. J. Phys. Chem. C 115, 5413–5421 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Ramesh, Y. Haldorai, H.S. Kim, J.H. Kim, A nanocrystalline Co3O4 @ polypyrrole/MWCNT hybrid nanocomposite for high performance electrochemical supercapacitors. RSC Adv. 7, 36833–36843 (2017)CrossRefGoogle Scholar
  11. 11.
    M. Chen, Q. Ge, M. Qi, X. Liang, F. Wang, Q. Chen, Cobalt oxides nanorods arrays as advanced electrode for high performance supercapacitor. Surf. Coat. Technol. 360, 73–77 (2019)CrossRefGoogle Scholar
  12. 12.
    D.P. Nair, T. Sakthivel, R. Nivea, J.S. Eshow, V. Gunasekaran, Effect of surfactants on electrochemical properties of vanadium-pentoxide nanoparticles synthesized via hydrothermal method. J. Nanosci. Nanotechnol. 15(6), 4392–4397 (2015)CrossRefGoogle Scholar
  13. 13.
    R. Yu, C. Zhang, Q. Meng, Z. Chen, H. Liu, Z. Guo, Facile synthesis of hierarchical networks composed of highly interconnected V2O5 nanosheets assembled on carbon nanotubes and their superior lithium storage properties. ACS Appl. Mater. Interfaces. 5, 12394–12399 (2013)CrossRefGoogle Scholar
  14. 14.
    J.C. Selvakumari, S.T. Nishanthi, J. Dhanalakshmi, M. Ahila, D.P. Padiyan, Bio-active synthesis of tin oxide nanoparticles using eggshell membrane for energy storage application. Appl. Surf. Sci. 441, 530–537 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Xihong, G. Wang, T. Zhai, Yu. Minghao, J. Gan, Y. Tong, Y. Li, Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett. 12, 1690–1696 (2012)CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, Q. Gao, H. Gao, Z. Shi, W. Junwei, M. Zhi, Z. Hong, Nickel oxide aerogel for high performance supercapacitor electrodes. RSC Adv. 6, 112620–112624 (2016)CrossRefGoogle Scholar
  17. 17.
    M. Li, G. Sun, P. Yin, C. Ruan, K. Ai, Controlling the formation of rodlike V2O5 nanocrystals on reduced graphene oxide for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 5, 11462–11470 (2013)CrossRefGoogle Scholar
  18. 18.
    M. Lee, S.K. Balasingam, H.Y. Jeong, W.G. Hong, H.-B.-R. Lee, B.H. Kim, Y. Jun, One-step hydrothermal synthesis of graphene decorated V2O5 nanobelts for enhanced electrochemical energy storage. Sci. Rep. 5, 8151–8158 (2015)CrossRefGoogle Scholar
  19. 19.
    H. Zhao, L. Pan, S. Xing, J. Luo, J. Xu, Vanadium oxidesereduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance. J. Power Sources 222, 21–31 (2013)CrossRefGoogle Scholar
  20. 20.
    J.S. Bonsoa, A. Rahya, S.D. Perera, N. Nour, O. Seitz, Y.J. Chabal, K.J. Balkus Jr., J.P. Ferraris, D.J. Yang, Exfoliated graphite nanoplatelets–V2O5 nanotube composite electrodes for supercapacitors. J. Power Sources 203, 227–232 (2012)CrossRefGoogle Scholar
  21. 21.
    C. Subba Reddy, K.-I. Park, S.-i. Mho, I.-H. Yeo, S.-M. Park, Simple preparation of V2O5 nanostructures and their characterization. Bull. Korean Chem. Soc. 29(10), 2061–2064 (2008)CrossRefGoogle Scholar
  22. 22.
    L. Cao, J. Zhu, Y. Li, P. Xiao, Y. Zhang, S. Zhang, S. Yang, Ultrathin single-crystalline vanadium pentoxide nanoribbon constructed 3D networks for superior energy storage. J. Mater. Chem. A. 2, 13136–13142 (2014)CrossRefGoogle Scholar
  23. 23.
    Yu. Weijie, J. Wangn, Z. Gou, W. Zeng, W. Guo, L. Lin, Hydrothermal synthesis of vanadium pentoxide nanostructures and their morphology control. Ceram. Int. 39, 2639–2643 (2013)CrossRefGoogle Scholar
  24. 24.
    P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, D.R. Lee, Vanadium pentoxide nanofibers by electrospinning. Scr. Mater. 49, 577–581 (2003)CrossRefGoogle Scholar
  25. 25.
    J. Shin, H. Jung, Y. Kim, J. Kim, Carbon-coated V2O5 nanoparticles with enhanced electrochemical performance as a cathode material for lithium ion batteries. J. Alloys Compd. 589, 322–329 (2014)CrossRefGoogle Scholar
  26. 26.
    A.-M. Cao, H. Jin-Song, H.-P. Liang, L.-J. Wan, Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem. Int. Ed. 44, 4391–4395 (2005)CrossRefGoogle Scholar
  27. 27.
    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, Fabrication of two-dimensional reduced graphene oxide supported V2O5 networks and their application in supercapacitors. Mater. Chem. Phys. 170, 266–275 (2015)CrossRefGoogle Scholar
  28. 28.
    D. Surya Bhaskaram, R. Cheruku, G. Govindaraj, Reduced graphene oxide wrapped V2O5 nanoparticles: green synthesis and electrical properties. J. Mater. Sci.: Mater. Electron. 27, 10855–10863 (2016)Google Scholar
  29. 29.
    P.T. Yin, S. Shah, M. Chhowalla, K.-B. Lee, Design, synthesis and characterization of graphene–nanoparticle hybrid materials for bioapplications. Chem. Rev. 115, 2483–2531 (2015)CrossRefGoogle Scholar
  30. 30.
    F. Meimei, C. Ge, Z. Hou, J. Cao, B. He, F. Zeng, Y. Kuang, Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors. Phys. B 421, 77–82 (2013)CrossRefGoogle Scholar
  31. 31.
    Z. Liu, H. Zhang, Q. Yang, Y. Chen, Graphene/V2O5 hybrid electrode for an asymmetric supercapacitor with high energy density in an organic electrolyte. Electrochim. Acta 287, 149–157 (2018)CrossRefGoogle Scholar
  32. 32.
    B. Huang, Y. Liu, B. Li, G. Zeng, H. Xinjiang, B. Zheng, T. Li, L. Jiang, X. Tan, L. Zhou, Synthesis of graphene oxide decorated with core@double-shell nanoparticles and application for Cr(VI) removal. RSC Adv. 5, 106339–106349 (2015)CrossRefGoogle Scholar
  33. 33.
    D.-L. Fang, Z.-D. Chen, X. Liu, W. Zheng-Fei, C.-H. Zheng, Homogeneous growth of nano-sized β-Ni(OH)2 on reduced graphene oxide for high-performance supercapacitors. Electrochim. Acta 81, 321–329 (2012)CrossRefGoogle Scholar
  34. 34.
    R. Abazari, S. Sanati, L.A. Saghatforoush, Non-aggregated divanadium pentoxide nanoparticles: a one-step facile synthesis. Morphological, structural, compositional, optical properties and photocatalytic activities. Chem. Eng. J. 236, 82–90 (2014)CrossRefGoogle Scholar
  35. 35.
    A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B.W. Arey, G. Li, S.-q. Liang, J. Liu, Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 20, 9193–9199 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Mahajan, K. Singh, O.P. Pandey, Structural and growth kinetics of in situ reduced V2O5. Int. J. Refract. Met. Hard Mater. 46, 90–95 (2014)CrossRefGoogle Scholar
  37. 37.
    N. Senthil Kumar, J. Chandrasekaran, R. Mariappan, M. Sethuraman, M. Chavali, V2O5 nano-rods using low temperature chemical pyrophoric reaction technique: the effect of post annealing treatments on the structural, morphological, optical and electrical properties. Superlattices Microstruct. 65, 353–364 (2014)CrossRefGoogle Scholar
  38. 38.
    S. Bose, T. Kuila, A.K. Mishra, N.H. Kim, J.H. Lee, Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method. J. Mater. Chem. 22, 9696–9703 (2012)CrossRefGoogle Scholar
  39. 39.
    N. Asim, S. Radiman, M.A. Yarmo, M.S. Banaye Golriz, Vanadium pentoxide: synthesis and characterization of nanorod and nanoparticle V2O5 using CTAB micelle solution. Microporous Mesoporous Mater. 120, 397–401 (2009)CrossRefGoogle Scholar
  40. 40.
    A. Venkatesan, N.R.K. Chandar, A. Kandasamy, M. Karl Chinnu, K.N. Marimuthu, R. Mohan Kumar, R. Jayavel, Luminescence and electrochemical properties of rare earths (Gd, Nd) doped V2O5 nanostructures synthesized by non-aqueous sol–gel route. RSC Adv. 5, 21778–21785 (2015)CrossRefGoogle Scholar
  41. 41.
    Y.L. Cheah, N. Gupta, S.S. Pramana, V. Aravindan, G. Wee, S. Madhavi, Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries. J. Power Sources 196, 6465–6472 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Farahmandjou, N. Abaeyan, Simple synthesis of vanadium oxide (V2O5) nanorods in presence of CTAB surfactant. Colloid Surf. Sci. 1(1), 10–13 (2016)Google Scholar
  43. 43.
    P.K. Boruah, S. Szunerits, R. Boukherroub, M.R. Das, Magnetic Fe3O4@V2O5/rGO nanocomposite as a recyclable photocatalyst for dye molecules degradation under direct sunlight irradiation. Chemosphere 191, 503–513 (2018)CrossRefGoogle Scholar
  44. 44.
    N.M. Abd-Alghafour, N.M. Ahmed, Z. Hassan, Fabrication and characterization of V2O5 nanorods based metal–semiconductor–metal photodetector. Sensors Actuators A 250, 250–257 (2016)CrossRefGoogle Scholar
  45. 45.
    S. Rajeshwari, J. Santhosh Kumar, R.T. Rajendrakumar, N. Ponpandian, P. Thangadurai, Influence of Sn ion doping on the photocatalytic performance of V2O5 nanorods prepared by hydrothermal method. Mater. Res. Express. 5(1), 1–26 (2018)Google Scholar
  46. 46.
    J. Chen, B. Yao, C. Li, G. Shi, An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013)CrossRefGoogle Scholar
  47. 47.
    P. Bhawal, S. Ganguly, T.K. Chaki, N.C. Das, Synthesis and characterization of graphene oxide filled ethylene methyl acrylate hybrid nanocomposites. RSC Adv. 6, 20781–20790 (2016)CrossRefGoogle Scholar
  48. 48.
    A. Qian, K. Zhuo, M.S. Shin, W.W. Chun, B.N. Choi, C.-H. Chung, Surfactant effects on the morphology and pseudocapacitive behavior of V2O5 H2O. Chemsuschem 8(14), 2399–2406 (2015)CrossRefGoogle Scholar
  49. 49.
    Y. Yang, L. Li, H. Fei, Z. Peng, G. Ruan, J.M. Tour, Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. Appl. Mater. Interfaces 6, 9590–9594 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Huang, Y. Zhang, Influence of the electrochemical properties of vanadium oxides on specific capacitance by molybdenum doping. Bull. Mater. Sci. 42(1), 1–12 (2019)CrossRefGoogle Scholar
  51. 51.
    Y. Zhang, Y. Liu, J. Chen, Q. Guo, T. Wang, H. Pang, Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application. Sci. Rep. 4, 1–5 (2014)Google Scholar
  52. 52.
    J.H. Park, J.M. Ko, O. Ok Park, D.W. Kim, Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources 105, 20–25 (2002)CrossRefGoogle Scholar
  53. 53.
    U. Ediga, R. Gaddam, P. Justin, R.R. Gangavarapu, Synthesis of mesoporous NiCo2O4-rGO by solvothermal method for charge storage applications. RSC Adv. 5, 66657–66666 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsAnnamalai UniversityAnnamalai NagarIndia
  2. 2.Department of Physics and NanotechnologySRM Institute of Science and TechnologyChennaiIndia

Personalised recommendations