Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16124–16134 | Cite as

Enhanced sensing characteristics of relative humidity sensors based on Al and F co-doped ZnO nanostructured thin films

  • Gökhan AlgünEmail author
  • Namık Akçay


This study reports the humidity sensing characteristics of aluminum (Al) and fluorine (F) co-doped zinc oxide (ZnO) nanostructured thin films with different Al concentrations. Sol–gel method was used in the synthesis of Al and F doped ZnO nanoparticles. The Al concentration was changed to 0.5 mol%, 1 mol% and 1.5 mol% while F concentration was kept constant at 2 mol%. Al and F co-doped ZnO (AFZO) nanostructured thin films for manufacturing relative humidity (RH) sensors were fabricated on glass substrates with a dip coating technique and then annealed at 500 °C for 1 h. The scanning electron microscopy (SEM) micrographs indicated that all AFZO films had uniform and homogeneous surfaces. The X-ray diffraction (XRD) patterns revealed that AFZO films were polycrystalline and have a hexagonal wurtzite structure with a preferential orientation along the (002) plane. The RH sensing characteristics of AFZO sensors was determined by electrical resistance measurements in the range of 40–90% RH at room temperature (RT). Both the electrical resistivity and RH sensing characteristics of AFZO sensors were found to be highly dependent on the Al concentration. All AFZO sensors exhibited high sensitivity, excellent stability, fast response and recovery times and a repeatable characteristic. The lowest electrical resistivity and best humidity sensor characteristics were obtained for AFZO sensor containing 1 mol% Al (AFZO–010). The sensitivity ratio between 40 and 90% RH is approximately 247 × for AFZO–010. This study showed that AFZO nanostructured thin films are promising for high performance humidity sensor applications.



This study was supported by Scientific Research Center Coordination Unit of Istanbul University. Project numbers are ONAP–52038, FYL–2017–24168 and 58255.


  1. 1.
    H. Farahani, R. Wagiran, M.N. Hamidon, Sensors 14, 7881 (2014)CrossRefGoogle Scholar
  2. 2.
    X. Le, L. Peng, J. Pang, Z. Xu, C. Gao, J. Xie, Sens. Actuators B 283, 198 (2019)CrossRefGoogle Scholar
  3. 3.
    M. Chen, S. Xue, L. Liu, Z. Li, H. Wang, C. Tan, J. Yang, X. Hu, X.-F. Jiang, Y. Cheng, H. Wang, X. Xing, S. He, Sens. Actuators B 287, 329 (2019)CrossRefGoogle Scholar
  4. 4.
    M. Anbia, S.E.M. Fard, J. Rare Earths 30, 38 (2012)CrossRefGoogle Scholar
  5. 5.
    N.D.M. Sin, S. Ahmad, M.F. Malek, M.H. Mamat, M. Rusop, IOP Conf. Ser. Mater. Sci. Eng. 46, 012005 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Sun, Q. Shi, M.S. Yazici, C. Lee, Y. Liu, Sensors 18, 4352 (2018)CrossRefGoogle Scholar
  7. 7.
    Q. Qi, T. Zhang, S. Wang, X. Zheng, Sens. Actuators B 137, 649 (2009)CrossRefGoogle Scholar
  8. 8.
    W.P. Tai, J.H. Oh, Thin Solid Films 422, 220 (2002)CrossRefGoogle Scholar
  9. 9.
    J. Singh, P. Kumar, D.J. Late, T. Singh, M.A. More, D.S. Joag, R.S. Tiwari, K.S. Hui, K.N. Hui, O.N. Srivastava, Dig. J. Nanomater. Biostruct. 7, 795 (2012)Google Scholar
  10. 10.
    H.T. Hsueh, T.J. Hsueh, S.J. Chang, F.Y. Hung, W.Y. Weng, C.L. Hsu, B.T. Dai, Sens. Actuators B 156, 906 (2011)CrossRefGoogle Scholar
  11. 11.
    A. Maldonado, S.T. Guerra, J.M. Cázares, M.D.L.L. Olvera, Thin Solid Films 518, 1815 (2010)CrossRefGoogle Scholar
  12. 12.
    G.M. Nam, M.S. Kwon, Electron. Mater. Lett. 7, 127 (2011)CrossRefGoogle Scholar
  13. 13.
    W.P. Tai, J.G. Kim, J.H. Oh, Sens. Actuators B 96, 477 (2003)CrossRefGoogle Scholar
  14. 14.
    D.C.A. Juárez, G.T. Delgado, S.J. Sandoval, O.J. Sandoval, R.C. Pérez, Sol. Energy Mater. Sol. Cells 82, 35 (2004)CrossRefGoogle Scholar
  15. 15.
    R. Nagarajan, V. Kumar, S. Ahmad, Indian J. Chem. A 51, 145 (2012)Google Scholar
  16. 16.
    A. Douayar, R. Diaz, F. Cherkaoui El Moursli, G. Schmerber, A. Dinia, M. Abd-Lefdil, Eur. Phys. J. Appl. Phys. 53, 20501 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Fujihara, J. Kusakado, T. Kimura, J. Mater. Sci. Lett. 17, 781 (1998)CrossRefGoogle Scholar
  18. 18.
    J. Hu, R.G. Gordon, Sol. Cells 30, 437 (1991)CrossRefGoogle Scholar
  19. 19.
    G. Algün, J. Mater. Sci. 29, 17039 (2018)Google Scholar
  20. 20.
    F.H. Wang, T.H. Yang, Thin Solid Films 605, 64 (2016)CrossRefGoogle Scholar
  21. 21.
    P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandes, P. Vilarinho, R. Martins, Vacuum 64, 281 (2002)CrossRefGoogle Scholar
  22. 22.
    J.H. Lee, B.O. Park, Thin Solid Films 426, 94 (2003)CrossRefGoogle Scholar
  23. 23.
    I. Kim, K.S. Lee, T.S. Lee, J.H. Jeong, B.K. Cheong, Y.J. Baik, W.M. Kim, J. Appl. Phys. 100, 063701 (2006)CrossRefGoogle Scholar
  24. 24.
    B.G. Choi, I.H. Kim, D.H. Kim, K.S. Lee, T.S. Lee, B. Cheong, Y.J. Baik, W.M. Kim, J. Eur. Ceram. Soc. 25, 2161 (2005)CrossRefGoogle Scholar
  25. 25.
    F.H. Wang, C.L. Chang, Appl. Surf. Sci. 370, 83 (2016)CrossRefGoogle Scholar
  26. 26.
    Z. Pan, Y. Xiao, X. Tian, S. Wu, C. Chen, J. Deng, C. Xiao, G. Hu, Z. Wei, Mat. Sci. Semicon. Proc. 17, 162 (2014)CrossRefGoogle Scholar
  27. 27.
    J.C. Li, Y. Wang, D.C. Ba, Phys. Procedia 32, 347 (2012)CrossRefGoogle Scholar
  28. 28.
    S. Tewari, A. Bhattacharjee, Pramana 76, 153 (2011)CrossRefGoogle Scholar
  29. 29.
    S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, J. Cryst. Growth 287, 78 (2006)CrossRefGoogle Scholar
  30. 30.
    J.J. Ding, S.Y. Ma, H.X. Chen, X.F. Shi, T.T. Zhou, L.M. Mao, Phys. B 404, 2439 (2009)CrossRefGoogle Scholar
  31. 31.
    H.M. Zhou, D.Q. Yi, Z.M. Yu, L.R. Xiao, J. Li, Thin Solid Films 515, 6909 (2007)CrossRefGoogle Scholar
  32. 32.
    L. Ma, S. Ma, H. Chen, X. Ai, X. Huang, Appl. Surf. Sci. 257, 10036 (2011)CrossRefGoogle Scholar
  33. 33.
    S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu, Appl. Surf. Sci. 255, 2353 (2008)CrossRefGoogle Scholar
  34. 34.
    T.M.K. Thandavan, S.M.A. Gani, C.S. Wong, R.M. Nor, PLoS ONE 10, 1 (2015)CrossRefGoogle Scholar
  35. 35.
    P. Scherrer, Kolloidchemie Ein Lehrbuch (Springer, Heidelberg, 1912), pp. 387–409CrossRefGoogle Scholar
  36. 36.
    A.L. Patterson, Phys. Rev. 56, 978 (1939)CrossRefGoogle Scholar
  37. 37.
    J.R. Ares, A. Pascual, I.J. Ferrer, C. Sanchez, Thin Solid Films 480–481, 477 (2005)CrossRefGoogle Scholar
  38. 38.
    A.A. Al-Ghamdi, O.A. Al-Hartomy, M. El Okr, A.M. Nawar, S. El-Gazzar, F. El-Tantawy, F. Yakuphanoglu, Spectrochim. Acta A 131, 512 (2014)CrossRefGoogle Scholar
  39. 39.
    R.X. Ma, M.K. Wang, B. Kang, Y.G. Wang, Optoelectron. Lett. 7, 0045 (2011)CrossRefGoogle Scholar
  40. 40.
    Y. Zhou, I. Matsubara, W. Shin, N. Izu, N. Murayama, J. Appl. Phys. 95, 625 (2004)CrossRefGoogle Scholar
  41. 41.
    M.I. Khan, K.A. Bhatti, R. Qindeel, N. Alonizan, H.S. Althobaiti, Results Phys. 7, 651 (2017)CrossRefGoogle Scholar
  42. 42.
    W.P. Tai, J.H. Oh, J. Mater. Sci. 13, 391 (2002)Google Scholar
  43. 43.
    K.S. Chou, T.K. Lee, F.J. Liu, Sens. Actuators B 56, 106 (1999)CrossRefGoogle Scholar
  44. 44.
    N.D.M. Sin, N. Samsudin, S. Ahmad, M.H. Mamat, M. Rusop, Procedia Eng. 56, 801 (2013)CrossRefGoogle Scholar
  45. 45.
    F. Tudorache, I. Petrila, S. Condurache-Bota, C. Constantinescu, M. Praisler, Superlattices Microstruct. 77, 276 (2015)CrossRefGoogle Scholar
  46. 46.
    A. Sharma, Y. Kumar, K. Mazumder, A.K. Rana, P.M. Shirage, New J. Chem. 42, 8445 (2018)CrossRefGoogle Scholar
  47. 47.
    A.S. Ismail, M.H. Mamat, I.B. Shameem Banu, R. Amiruddin, M.F. Malek, N. Parimon, A.S. Zoolfakar, N.M. Sin, A.B. Suriani, M.K. Ahmad, M. Rusop, Nano-Struct. Nano-Objects 18, 100262 (2019)CrossRefGoogle Scholar
  48. 48.
    S. Poovaragan, R. Sundaram, C.M. Magdalane, K. Kaviyarasu, M. Maaza, J. Nanosci. Nanotechnol. 19, 859 (2019)CrossRefGoogle Scholar
  49. 49.
    L.P.B. Reddy, R. Megha, H.G.R. Prakash, Y.T. Ravikiran, C.H.V.V. Ramana, S.C.V. Kumari, D. Kim, Inorg. Chem. Commun. 99, 180 (2018)CrossRefGoogle Scholar
  50. 50.
    T. Thiwawong, K. Onlaor, B. Tunhoo, Adv. Mater. Sci. Eng. 2013, 1 (2013)CrossRefGoogle Scholar
  51. 51.
    V.R. Radhakrishnan, Instrumentation and Control for the Chemical, Mineral, and Metallurgical Processes, 1st edn. (Allied Publisher, New Delhi, 1997)Google Scholar
  52. 52.
    T.F. Wu, J.D. Hong, RSC Adv. 6, 96935 (2016)CrossRefGoogle Scholar
  53. 53.
    Q. Zafar, M.I. Azmer, A.G. Al-Sehemi, M.S. Al-Assiri, A. Kalam, K. Sulaiman, J. Nanopart. Res. 18, 186 (2016)CrossRefGoogle Scholar
  54. 54.
    S. Basu, Y.H. Wang, C. Ghanshyam, P. Kapur, Bull. Mater. Sci. 36, 521 (2013)CrossRefGoogle Scholar
  55. 55.
    S. Arunachalam, R. Izquierdo, F. Nabki, Sensors (Switzerland) 19, 680 (2019)CrossRefGoogle Scholar
  56. 56.
    M.T.S. Chani, K.S. Karimov, S.B. Khan, N. Fatima, A.M. Asiri, Ceram. Int. 45, 10565 (2019)CrossRefGoogle Scholar
  57. 57.
    S. Yu, H. Zhang, C. Chen, C. Lin, Sens. Actuators B 287, 526 (2019)CrossRefGoogle Scholar
  58. 58.
    D.K. Maurya, S. Sikarwar, P. Chaudhary, S. Angaiah, B.C. Yadav, IEEE Sens. J. 19, 2837 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceIstanbul UniversityIstanbulTurkey

Personalised recommendations