Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16110–16123 | Cite as

Effects specific surface area and oxygen vacancy on the photocatalytic properties of mesoporous F doped SnO2 nanoparticles prepared by hydrothermal method

  • Xiaolong Wang
  • Min Xu
  • Lu Liu
  • Yan Cui
  • Hansong Geng
  • Hongli Zhao
  • Bo LiangEmail author
  • Jingkai YangEmail author
Article
  • 31 Downloads

Abstract

Mesoporous Fluorine doped SnO2 (FTO) nanoparticles (NPs) have been successfully synthesized by hydrothermal process. Subsequent annealing process at 350 °C, 500 °C, 650 °C and 800 °C has been carried out to synthesize FTO photocatalysts with different specific surface areas and oxygen vacancy contents. X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy characterization, Raman measurement, X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), X-ray photoelectron spectroscopy (XPS), UV–Vis diffuse reflectance and Photoluminescence (PL) spectra have been used to investigate the effects of specific surface areas and oxygen vacancy contents on the photocatalytic properties of mesoporous FTO photocatalysts. The results show that the mesoporous FTO NPs consist of spherical nanoparticles of 3–6 nm in diameters with a tetragonal crystal structure. The as–synthesized mesoporous FTO NPs with the band gap of 3.91 eV, the largest number of oxygen vacancies and the largest surface area of 145.55 m2 g−1 exhibit an excellent photocatalytic activity when degrading methyl orange (MO) under UV light irradiation, and the degradation of dye methyl orange (MO) can reach 97% within 80 min. Moreover, the superoxide oxide (•O2) is the major active specie, which has played a key role in MO degradation system. The photocatalytic mechanism of FTO photocatalysts has been also proposed.

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFB0303902), National Natural Science Foundation of China (No. 51602278), Natural Science Foundation of Hebei Province (No. E2016203149), the Key Basic Research Project of Hebei Province (No. 17961109D) and Hebei Province Department of Higher Education Science and Technology Plan of Young Talents (No. BJ2018004).

Supplementary material

10854_2019_1981_MOESM1_ESM.docx (216 kb)
Supplementary material 1 (DOCX 216 kb)

References

  1. 1.
    C. Kilic, A. Zunger, Origins of coexistence of conductivity and transparency in SnO2. Phys. Rev. Lett. 88, 95501 (2002).  https://doi.org/10.1103/PhysRevLett.88.095501 CrossRefGoogle Scholar
  2. 2.
    R. Godin, B.D. Sherman, J.J. Bergkamp, C.A. Chesta, A.L. Moore, T.A. Moore, R.E. Palacios, G. Cosa, Charge-transfer dynamics of fluorescent dye-sensitized electrodes under applied biases. J. Phys. Chem. Lett. 6, 2688–2693 (2015).  https://doi.org/10.1021/acs.jpclett.5b01061 CrossRefGoogle Scholar
  3. 3.
    J. Guo, J. Zhang, H. Gong, D. Ju, B. Cao, Au nanoparticle-functionalized 3D SnO2 microstructures for high performance gas sensor. Sens. Actuators B 226, 266–272 (2016).  https://doi.org/10.1016/j.snb.2015.11.140 CrossRefGoogle Scholar
  4. 4.
    Y. Li, W. Yin, R. Deng, R. Chen, J. Chen, Q. Yan, B. Yao, H. Sun, S. Wei, T. Wu, Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 4, e30 (2012).  https://doi.org/10.1038/am.2012.56 CrossRefGoogle Scholar
  5. 5.
    H. Ye, Z. Liu, X. Liu, B. Sun, X. Tan, Y. Tu, T. Shi, Z. Tang, G. Liao, 17.78% efficient low-temperature carbon-based planar perovskite solar cells using Zn-doped SnO2 electron transport layer. Appl. Surf. Sci. 478, 417–425 (2019).  https://doi.org/10.1016/j.apsusc.2019.01.237 CrossRefGoogle Scholar
  6. 6.
    M.T. Uddin, Y. Nicolas, C. Olivier, T. Toupance, L. Servant, M.M. Müller, H. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 51, 7764–7773 (2012).  https://doi.org/10.1021/ic300794j CrossRefGoogle Scholar
  7. 7.
    B. Babu, A.N. Kadam, R.V.S.S. Ravikumar, C. Byon, Enhanced visible light photocatalytic activity of Cu-doped SnO2 quantum dots by solution combustion synthesis. J. Alloy. Compd. 703, 330–336 (2017).  https://doi.org/10.1016/j.jallcom.2017.01.311 CrossRefGoogle Scholar
  8. 8.
    V. Etacheri, G.A. Seisenbaeva, J. Caruthers, G. Daniel, J. Nedelec, V.G. Kessler, V.G. Pol, Ordered network of interconnected SnO2 nanoparticles for excellent lithium-ion storage. Adv. Energy Mater. 5, 1401289 (2015).  https://doi.org/10.1002/aenm.201401289 CrossRefGoogle Scholar
  9. 9.
    S. Pan, S. Wang, Y. Zhang, S. Xu, F. Kong, Y. Luo, Y. Tian, X. Teng, G. Li, Surface Fe3+-decorated pristine SnO2 nanoparticles with enhanced ·OH radical generation performance. Catal. Commun. 24, 96–99 (2012).  https://doi.org/10.1016/j.catcom.2012.03.034 CrossRefGoogle Scholar
  10. 10.
    M. Zhang, T. An, X. Hu, C. Wang, G. Sheng, J. Fu, Preparation and photocatalytic properties of a nanometer ZnO–SnO2 coupled oxide. Appl. Catal. A 260, 215–222 (2004).  https://doi.org/10.1016/j.apcata.2003.10.025 CrossRefGoogle Scholar
  11. 11.
    H. Ma, C. Li, J. Yin, X. Pu, D. Zhang, C. Su, X. Wang, X. Shao, Polyoxometalate enhances the photocatalytic performance of polyaniline/SnO2 composites. Mater. Lett. 168, 103–106 (2016).  https://doi.org/10.1016/j.matlet.2016.01.041 CrossRefGoogle Scholar
  12. 12.
    Y. Yang, X. Yang, D. Leng, S. Wang, W. Zhang, Fabrication of g-C3N4/SnS2/SnO2 nanocomposites for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Chem. Eng. J. 335, 491–500 (2018).  https://doi.org/10.1016/j.cej.2017.10.173 CrossRefGoogle Scholar
  13. 13.
    J. Wei, S. Xue, P. Xie, R. Zou, Synthesis and photocatalytic properties of different SnO2 microspheres on graphene oxide sheets. Appl. Surf. Sci. 376, 172–179 (2016).  https://doi.org/10.1016/j.apsusc.2016.03.058 CrossRefGoogle Scholar
  14. 14.
    J. Mazloom, F.E. Ghodsi, H. Golmojdeh, Synthesis and characterization of vanadium doped SnO2 diluted magnetic semiconductor nanoparticles with enhanced photocatalytic activities. J. Alloy Compd. 639, 393–399 (2015).  https://doi.org/10.1016/j.jallcom.2015.03.184 CrossRefGoogle Scholar
  15. 15.
    L. Yang, J. Huang, L. Shi, L. Cao, W. Zhou, K. Chang, X. Meng, G. Liu, Y. Jie, J. Ye, Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy 36, 331–340 (2017).  https://doi.org/10.1016/j.nanoen.2017.04.039 CrossRefGoogle Scholar
  16. 16.
    G. Caputo, S.G. Leonardi, S. Mariotti, M. Latino, N. Donato, S. Trocino, N. Pinna, G. Neri, Microstructural, electrical and hydrogen sensing properties of F-SnO2 nanoparticles. Procedia Eng. 87, 1087–1090 (2014).  https://doi.org/10.1016/j.proeng.2014.11.353 CrossRefGoogle Scholar
  17. 17.
    Y. Zang, L. Li, X. Li, R. Lin, G. Li, Synergistic collaboration of g-C3N4/SnO2 composites for enhanced visible-light photocatalytic activity. Chem. Eng. J. 246, 277–286 (2014).  https://doi.org/10.1016/j.cej.2014.02.068 CrossRefGoogle Scholar
  18. 18.
    T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, Q. Zhang, Synthesis, characterization, and photocatalytic activity of Zn-doped SnO2 hierarchical architectures assembled by nanocones. J. Phys. Chem. C 113, 9071–9077 (2009).  https://doi.org/10.1021/jp9021272 CrossRefGoogle Scholar
  19. 19.
    Z. Wen, G. Wang, W. Lu, Q. Wang, Q. Zhang, J. Li, Enhanced photocatalytic properties of mesoporous SnO2 induced by low concentration ZnO doping. Cryst. Growth Des. 7, 1722–1725 (2007).  https://doi.org/10.1021/cg060801z CrossRefGoogle Scholar
  20. 20.
    A. Ahmed, M. Naseem Siddique, U. Alam, T. Ali, P. Tripathi, Improved photocatalytic activity of Sr doped SnO2 nanoparticles: a role of oxygen vacancy. Appl. Surf. Sci. 463, 976–985 (2019).  https://doi.org/10.1016/j.apsusc.2018.08.182 CrossRefGoogle Scholar
  21. 21.
    L. Yang, Y. Yang, T. Liu, X. Ma, S.W. Lee, Y. Wang, Oxygen vacancies confined in SnO2 nanoparticles for glorious photocatalytic activities from the UV, visible to near-infrared region. New J. Chem. 42, 15253–15262 (2018).  https://doi.org/10.1039/C8NJ00668G CrossRefGoogle Scholar
  22. 22.
    H. Kim, R.C.Y. Auyeung, A. Piqué, Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films 516, 5052–5056 (2008).  https://doi.org/10.1016/j.tsf.2007.11.079 CrossRefGoogle Scholar
  23. 23.
    M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method. J. Hazard. Mater. 154, 1141–1148 (2008).  https://doi.org/10.1016/j.jhazmat.2007.11.021 CrossRefGoogle Scholar
  24. 24.
    X. Wang, X. Wang, Q. Di, H. Zhao, B. Liang, J. Yang, Mutual effects of fluorine dopant and oxygen vacancies on structural and luminescence characteristics of F doped SnO2 nanoparticles. Materials 10, 1398 (2017).  https://doi.org/10.3390/ma10121398 CrossRefGoogle Scholar
  25. 25.
    A. Azam, A.S. Ahmed, S.S. Habib, A.H. Naqvi, Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles. J. Alloy Compd. 523, 83–87 (2012).  https://doi.org/10.1016/j.jallcom.2012.01.072 CrossRefGoogle Scholar
  26. 26.
    J. Kaur, J. Shah, R.K. Kotnala, K.C. Verma, Raman spectra, photoluminescence and ferromagnetism of pure, Co and Fe doped SnO2 nanoparticles. Ceram. Int. 38, 5563–5570 (2012).  https://doi.org/10.1016/j.ceramint.2012.03.075 CrossRefGoogle Scholar
  27. 27.
    M. Shohel, M.S. Miran, M.A.B.H. Susan, M.Y.A. Mollah, Calcination temperature-dependent morphology of photocatalytic ZnO nanoparticles prepared by an electrochemical–thermal method. Res. Chem. Intermed. 42, 5281–5297 (2016).  https://doi.org/10.1007/s11164-015-2358-x CrossRefGoogle Scholar
  28. 28.
    Y. Song, J. Gu, K. Xia, J. Yi, H. Chen, X. She, Z. Chen, C. Ding, H. Li, H. Xu, Construction of 2D SnS2/g-C3N4 Z-scheme composite with superior visible-light photocatalytic performance. Appl. Surf. Sci. 467–468, 56–64 (2019).  https://doi.org/10.1016/j.apsusc.2018.10.118 CrossRefGoogle Scholar
  29. 29.
    R. Huang, S. Huang, D. Chen, Q. Zhang, T. Le, Q. Wang, Z. Hu, Z. Chen, Y. Jiang, B. Zhao, Insight into efficient pollutant degradation from paramorphic SnO2 hierarchical superstructures. J. Alloy Compd. 776, 287–296 (2019).  https://doi.org/10.1016/j.jallcom.2018.10.289 CrossRefGoogle Scholar
  30. 30.
    S. Monticone, R. Tufeu, A.V. Kanaev, E. Scolan, C. Sanchez, Quantum size effect in TiO2 nanoparticles: does it exist? Appl. Surf. Sci. 162, 565–570 (2000).  https://doi.org/10.1016/S0169-4332(00)00251-8 CrossRefGoogle Scholar
  31. 31.
    P. Sun, L. You, Y. Sun, N. Chen, X. Li, H. Sun, J. Ma, G. Lu, Novel Zn-doped SnO2 hierarchical architectures: synthesis, characterization, and gas sensing properties. CrystEngComm 14, 171–178 (2012).  https://doi.org/10.1039/c1ce06197f Google Scholar
  32. 32.
    N. Li, K. Du, G. Liu, Y. Xie, G. Zhou, J. Zhu, F. Li, H. Cheng, Effects of oxygen vacancies on the electrochemical performance of tin oxide. J. Mater Chem. A 1, 1536–1539 (2013).  https://doi.org/10.1039/C2TA01012G CrossRefGoogle Scholar
  33. 33.
    Talinungsang, D. Dhar Purkayastha, M.G. Krishna, Dopant controlled photoinduced hydrophilicity and photocatalytic activity of SnO2 thin films. Appl. Surf. Sci. 447, 724–731 (2018).  https://doi.org/10.1016/j.apsusc.2018.04.028 CrossRefGoogle Scholar
  34. 34.
    Y. Zhao, J. Liu, Q. Liu, Y. Sun, D. Song, W. Yang, J. Wang, L. Liu, One-step synthesis of SnO2 hollow microspheres and its gas sensing properties. Mater. Lett. 136, 286–288 (2014).  https://doi.org/10.1016/j.matlet.2014.08.073 CrossRefGoogle Scholar
  35. 35.
    S.A. Hejazi Juybari, H. Milani Moghaddam, Facile fabrication of porous hierarchical SnO2 via a self-degraded template and their remarkable photocatalytic performance. Appl. Surf. Sci. 457, 179–186 (2018).  https://doi.org/10.1016/j.apsusc.2018.06.259 CrossRefGoogle Scholar
  36. 36.
    F. Arlinghaus, Energy bands in stannic oxide (SnO2). J. Phys. Chem. Solids 35, 931–935 (1974).  https://doi.org/10.1016/S0022-3697(74)80102-2 CrossRefGoogle Scholar
  37. 37.
    C. Lu, J. Wang, F. Xu, A. Wang, D. Meng, Zn-doped SnO2 hierarchical structures formed by a hydrothermal route with remarkably enhanced photocatalytic performance. Ceram. Int. 44, 15145–15152 (2018).  https://doi.org/10.1016/j.ceramint.2018.05.151 CrossRefGoogle Scholar
  38. 38.
    T. Li, X. Zhang, J. Ni, J. Fang, D. Zhang, J. Sun, C. Wei, S. Xu, G. Wang, Y. Zhao, Modify the Schottky contact between fluorine-doped tin oxide front electrode and p-a-SiC: H by carbon dioxide plasma treatment. Sol. Energy 134, 375–382 (2016).  https://doi.org/10.1016/j.solener.2016.04.042 CrossRefGoogle Scholar
  39. 39.
    C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through lanthanum doping. J. Alloy. Compd. 666, 392–405 (2016).  https://doi.org/10.1016/j.jallcom.2016.01.104 CrossRefGoogle Scholar
  40. 40.
    F. Gu, S.F. Wang, M.K. Lü, G.J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol − gel method. J. Phys. Chem. B 108, 8119–8123 (2004).  https://doi.org/10.1021/jp036741e CrossRefGoogle Scholar
  41. 41.
    L.Z. Liu, J.Q. Xu, X.L. Wu, T.H. Li, J.C. Shen, P.K. Chu, Optical identification of oxygen vacancy types in SnO2 nanocrystals. Appl. Phys. Lett. 102, 31916 (2013).  https://doi.org/10.1063/1.4789538 CrossRefGoogle Scholar
  42. 42.
    G. Di, Z. Zhu, H. Zhang, J. Zhu, Y. Qiu, D. Yin, S. Küppers, Visible-light degradation of sulfonamides by Z-scheme ZnO/g-C3N4 heterojunctions with amorphous Fe2O3 as electron mediator. J. Colloid Interface Sci. 538, 256–266 (2019).  https://doi.org/10.1016/j.jcis.2018.11.100 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.Division of Functional Materials and Nano DevicesNingbo Institute of Material Technology and Engineering, Chinese Academy of SciencesNingboChina

Personalised recommendations