Preparation and characterization of manganese oxide nanoparticles-coated Albizia procera derived carbon for electrochemical water oxidation

  • Syed Shaheen Shah
  • Md. Abdul AzizEmail author
  • Amar Kamal Mohamedkhair
  • Mohammed Ameen Ahmed Qasem
  • Abbas Saeed Hakeem
  • Mazen Khaled Nazal
  • Zain Hasan Yamani


This work reports the preparation of manganese oxide nanoparticles on Albizia procera derived carbon (MnOxNPs-C) for electrochemical water oxidation, by a simple thermal decomposition method. Morphological variations, formation of crystalline structure, elemental, and chemical analyses were studied using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS), respectively. The SEM analysis showed that the manganese oxide nanoparticles are well dispersed over the carbon. The amount of manganese oxide nanoparticles increases by increasing the amount of precursor. XRD results showed the single-phase formation of the Mn3O4, and Mn3O4 along with MnO phase formation at low and high amount of the precursor materials, respectively. The chemical composition and the constituent elements of the prepared samples were also confirmed by EDS and XPS, consistent with the XRD results. Thermogravimetric and differential scanning calorimetry (TGA/DSC) analysis was used to study the thermal decomposition behavior of the as-prepared MnOxNPs-C and its precursors. Four different samples (prepared catalysts) were tested for the optimization of electrocatalytic activities towards water oxidation. The sample prepared using the highest amount of manganese precursor shows good stability and best catalytic performance for water oxidation.



The support of CENT-KFUPM research facility utilization in all different characterizations is acknowledged.

Supplementary material

10854_2019_1979_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2052 kb)


  1. 1.
    G.P. Dinga, Int. J. Hydrog. Energy 14, 777 (1989)CrossRefGoogle Scholar
  2. 2.
    G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 57, 39 (2004)CrossRefGoogle Scholar
  3. 3.
    C. Huang, T. Ouyang, Y. Zou, N. Li, Z.-Q. Liu, J. Mater. Chem. A 6, 7420 (2018)CrossRefGoogle Scholar
  4. 4.
    M.A.A. Qasem, M.A. Aziz, M. Qamaruddin, J.P. Kim, S.A. Onaizi, ChemistrySelect 3, 573 (2018)CrossRefGoogle Scholar
  5. 5.
    C.A. Martinez-Huitle, S. Ferro, Chem. Soc. Rev. 35, 1324 (2006)CrossRefGoogle Scholar
  6. 6.
    J.B. Gerken, J.G. McAlpin, J.Y.C. Chen, M.L. Rigsby, W.H. Casey, R.D. Britt, S.S. Stahl, J. Am. Chem. Soc. 133, 14431 (2011)CrossRefGoogle Scholar
  7. 7.
    L.-A. Stern, X. Hu, Faraday Discuss. 176, 363 (2015)CrossRefGoogle Scholar
  8. 8.
    J.A. Bau, E.J. Luber, J.M. Buriak, ACS Appl. Mater. Interfaces 7, 19755 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Surendranath, M.W. Kanan, D.G. Nocera, J. Am. Chem. Soc. 132, 16501 (2010)CrossRefGoogle Scholar
  10. 10.
    M.A. Aziz, A. El-Madkhoum, A.S. Hakeem, M.N. Shaikh, A.U. Rehman, Z.H. Yamani, J. Mater. Sci.: Mater. Electron. 28, 18463 (2017)Google Scholar
  11. 11.
    A. Singh, L. Spiccia, Coord. Chem. Rev. 257, 2607 (2013)CrossRefGoogle Scholar
  12. 12.
    A. Bergmann, I. Zaharieva, H. Dau, P. Strasser, Energy Environ. Sci. 6, 2745 (2013)CrossRefGoogle Scholar
  13. 13.
    N. Koteeswara Reddy, S. Winkler, N. Koch, N. Pinna, A.C.S. Appl, Mater. Interfaces 8, 3226 (2016)CrossRefGoogle Scholar
  14. 14.
    M.S. El-Deab, M.I. Awad, A.M. Mohammad, T. Ohsaka, Electrochem. Commun. 9, 2082 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Chen, X. Huang, L.J. Zhou, G.D. Li, M. Fan, X. Zou, ChemCatChem 8, 992 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Ahmad, K.V. Ramanujachary, S.E. Lofland, A.K. Ganguli, J. Mater. Chem. 14, 3406 (2004)CrossRefGoogle Scholar
  17. 17.
    S. Ching, E.J. Welch, S.M. Hughes, A.B. Bahadoor, S.L. Suib, Chem. Mater. 14, 1292 (2002)CrossRefGoogle Scholar
  18. 18.
    X. Yu, Y. He, J. Sun, K. Tang, H. Li, L. Chen, X. Huang, Electrochem. Commun. 11, 791 (2009)CrossRefGoogle Scholar
  19. 19.
    Y. Oaki, H. Imai, Angew. Chem. 119, 5039 (2007)CrossRefGoogle Scholar
  20. 20.
    Q. Fan, M.S. Whittingham, Electrochem. Solid-State Lett. 10, A48 (2007)CrossRefGoogle Scholar
  21. 21.
    W. Xiao, D. Wang, X.W. Lou, J. Phys. Chem. C 114, 1694 (2009)CrossRefGoogle Scholar
  22. 22.
    D. Yan, P. Yan, G. Yue, J. Liu, J. Chang, Q. Yang, D. Qu, Z. Geng, J. Chen, G. Zhang, Chem. Phys. Lett. 440, 134 (2007)CrossRefGoogle Scholar
  23. 23.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011)CrossRefGoogle Scholar
  24. 24.
    K.R. Prasad, N. Miura, Electrochem. Commun. 6, 1004 (2004)CrossRefGoogle Scholar
  25. 25.
    Y. Zhao, J. Li, C. Wu, L. Guan, Nanoscale Res. Lett. 6, 71 (2011)Google Scholar
  26. 26.
    Y. Zhao, R. Nakamura, K. Kamiya, S. Nakanishi, KJNc Hashimoto, Nat. Commun. 4, 2390 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Mette, A. Bergmann, J.P. Tessonnier, M. Hävecker, L. Yao, T. Ressler, R. Schlögl, P. Strasser, M. Behrens, ChemCatChem 4, 851 (2012)CrossRefGoogle Scholar
  28. 28.
    Y. Zhao, J. Zhang, K. Li, Z. Ao, C. Wang, H. Liu, K. Sun, G. Wang, J. Mater. Chem. A 4, 12818 (2016)CrossRefGoogle Scholar
  29. 29.
    I.V. Pavlidis, T. Vorhaben, T. Tsoufis, P. Rudolf, U.T. Bornscheuer, D. Gournis, H. Stamatis, Bioresour. Technol. 115, 164 (2012)CrossRefGoogle Scholar
  30. 30.
    I. Roche, E. Chaînet, M. Chatenet, J. Vondrák, J. Phys. Chem. C 111, 1434 (2007)CrossRefGoogle Scholar
  31. 31.
    M.A. Ahmed Qasem, M. Aziz, A.S. Hakeem, S.A. Onaizi, Curr. Nanosci. 14, 154 (2018)CrossRefGoogle Scholar
  32. 32.
    R. Liu, Y. Lin, L.Y. Chou, S.W. Sheehan, W. He, F. Zhang, H.J. Hou, D. Wang, Angew. Chem. Int. Ed. 50, 499 (2011)CrossRefGoogle Scholar
  33. 33.
    M.A.A. Qasem, A. Khan, S.A. Onaizi, H.D. Mohamed, A. Helal, M.A. Aziz, J. Appl. Electrochem. 49, 251 (2019)CrossRefGoogle Scholar
  34. 34.
    S. Fritsch, J. Sarrias, A. Rousset, G. Kulkarni, Mater. Res. Bull. 33, 1185 (1998)CrossRefGoogle Scholar
  35. 35.
    B. Sahoo, P.K. Panda, J. Adv. Ceram. 2, 26 (2013)CrossRefGoogle Scholar
  36. 36.
    X.-Y. Liu, M. Huang, H.-L. Ma, Z.-Q. Zhang, J.-M. Gao, Y.-L. Zhu, X.-J. Han, X.-Y. Guo, Molecules 15, 7188 (2010)CrossRefGoogle Scholar
  37. 37.
    A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 2, 154 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Du, Y. Gao, L. Chai, G. Zou, Y. Li, Y. Qian, Nanotechnology 17, 4923 (2006)CrossRefGoogle Scholar
  39. 39.
    T. Takashima, K. Hashimoto, R. Nakamura, J. Am. Chem. Soc. 134, 1519 (2012)CrossRefGoogle Scholar
  40. 40.
    E. Harada, A. Hokura, I. Nakai, Y. Terada, Ki Baba, K. Yazaki, M. Shiono, N. Mizuno, T. Mizuno, Metallomics 3, 1340 (2011)CrossRefGoogle Scholar
  41. 41.
    Y. Li, J. Qu, F. Gao, S. Lv, L. Shi, C. He, J. Sun, Appl. Catal. B 162, 268 (2015)CrossRefGoogle Scholar
  42. 42.
    P. Roy, A.P. Periasamy, C. Chuang, Y.-R. Liou, Y.-F. Chen, J. Joly, C.-T. Liang, H.-T. Chang, New J. Chem. 38, 4946 (2014)CrossRefGoogle Scholar
  43. 43.
    M. Risch, K.A. Stoerzinger, B. Han, T.Z. Regier, D. Peak, S.Y. Sayed, C. Wei, Z. Xu, Y. Shao-Horn, The. J. Phys. Chem. C 121, 17682 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics DepartmentKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Center of Research Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and Minerals, KFUPMDhahranSaudi Arabia
  3. 3.Center for Environment and Water (CEW)Research Institute (RI) at King Fahd University of Petroleum and Minerals, KFUPMDhahranSaudi Arabia

Personalised recommendations