Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16056–16064 | Cite as

Development of organic/inorganic PANI/ZnO 1D nanostructured hybrid thin film solar cell by soft chemical route

  • Dipak A. Tonpe
  • Ketan P. Gattu
  • Vishnu V. Kutwade
  • Makrand E. Sonawane
  • Avinash S. Dive
  • Ramphal SharmaEmail author
Article
  • 86 Downloads

Abstract

Polyaniline (PANI)/zinc oxide (ZnO) nanorods hybrid solar cell device was fabricated via a two-step process. The first step involved soft chemical synthesis of ZnO nanorods thin film on the indium-doped tin oxide (ITO) substrate and subsequent annealing in air at 300 °C. The second step of involved chemisorption of PANI on the surface of the ZnO nanorods by Doctor Blade Method. The fabricated heterojunction films were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), fourier transform infrared (FT-IR), and Raman spectra. The results confirmed chemical interactions between PANI and ZnO and thus the formation of the heterojunction. Both the PANI coated pristine and annealed ZnO nanorods thin films were studied for their solar cell characteristics. The results of solar cell measurements showed that the overall light-conversion efficiency of PANI coated pristine ZnO thin film to be ~ 80% higher than for PANI coated annealed ZnO thin film. This is attributed to more effective charge separation and faster interfacial charge transferring occurred in the pristine ZnO thin films.

Notes

Acknowledgements

The authors are thankful to the UGC-DAE Consortium for Scientific Research, Indore and IUAC, New Delhi for the characterization facilities. We are also thankful to the Department of Nanotechnology, Dr B. A. M. University for providing the laboratory facility.

References

  1. 1.
    K.R.T. Kumar, M. Ramakrishna, G.D. Sukumar, Int. J. Energy Res. 42, 2305–2319 (2018)CrossRefGoogle Scholar
  2. 2.
    R.B. Salikhov, Y.N. Biglova, T.R. Salikhov, Y.M. Yumaguzin, J. Nanoelectron. Optoelectron. 9, 792–794 (2014)CrossRefGoogle Scholar
  3. 3.
    W.J. Ke, G.H. Lin, C.P. Hsu et al., J. Mater. Chem. 21, 13483–13489 (2011)CrossRefGoogle Scholar
  4. 4.
    W.E. Mahmoud, J. Phys. D 42, 155502 (2009)CrossRefGoogle Scholar
  5. 5.
    Ü. Özgür, Y.I. Alivov, C. Liu et al., J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  6. 6.
    B. Cao, W. Cai, J. Phys. Chem. C 112, 680–685 (2008)CrossRefGoogle Scholar
  7. 7.
    L. Li, T. Zhai, Y. Bando, D. Golberg, Nano Energy 1, 91–106 (2012)CrossRefGoogle Scholar
  8. 8.
    N. Mufti, S. Maryam, A.A. Fibriyanti et al., Scanning 2018, 6545803 (2018)CrossRefGoogle Scholar
  9. 9.
    S.M. Hatch, J. Briscoe, A. Sapelkin et al., J. Appl. Phys. 113, 204501 (2013)CrossRefGoogle Scholar
  10. 10.
    J.Y. Ouyang, Acta Phys. Chim. Sin. 34, 1211–1220 (2018)Google Scholar
  11. 11.
    J. Jang, J. Ha, K. Kim, Thin Solid Films 516, 3152–3156 (2008)CrossRefGoogle Scholar
  12. 12.
    S.H. Eom, S. Senthilarasu, P. Uthirakumar et al., Sol. Energy Mater. Sol. Cells 92, 564–570 (2008)CrossRefGoogle Scholar
  13. 13.
    O. Lupan, V.M. Guerin, I.M. Tiginyanu et al., J. Photochem. Photobiol., A 211, 65–73 (2010)CrossRefGoogle Scholar
  14. 14.
    S. Tang, N. Tang, X. Meng, S. Huang, Y. Hao, Phys. E 83, 398–404 (2016)CrossRefGoogle Scholar
  15. 15.
    F.H. Alsultany, Z. Hassan, N.M. Ahmed, Superlattices Microstruct. 92, 68–79 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Zhang, J. Qin, Y. Xue et al., Sci. Rep. 4, 4596 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Chang, E.R. Waclawik, CrystEngComm 14, 4041–4048 (2012)CrossRefGoogle Scholar
  18. 18.
    K.P. Gattu, A.A. Kashale, K. Ghule et al., J. Mater. Sci. 28, 13209–13216 (2017)Google Scholar
  19. 19.
    J.P. Pouget, M.E. Jozefowicz, A.J. Epstein, X. Tang, A.G. MacDiarmid, Macromolecules 24, 779–789 (1991)CrossRefGoogle Scholar
  20. 20.
    M.A. Haque, S. Mahalakshmi, Mater. Focus 2, 469–474 (2013)CrossRefGoogle Scholar
  21. 21.
    H.R. Liu, G.X. Shao, W. Jia et al., CrystEngComm 15, 3615–3622 (2013)CrossRefGoogle Scholar
  22. 22.
    Z. Zhou, X. Zhang, C. Lu, L. Lan, G. Yuan, RSC Adv. 4, 8966–8972 (2014)CrossRefGoogle Scholar
  23. 23.
    S. Zhu, W. Wei, X. Chen, M. Jiang, Z. Zhou, J. Solid State Chem. 190, 174–179 (2012)CrossRefGoogle Scholar
  24. 24.
    R. Das, A. Kumar, Y. Kumar, S. Sen, P.M. Shirage, RSC Adv. 5, 60365–60372 (2015)CrossRefGoogle Scholar
  25. 25.
    M. Hasan, M.O. Ansari, M.H. Cho, M. Lee, J. Ind. Eng. Chem. 22, 147–152 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Malta, G. Louarn, N. Errien, R.M. Torresi, J. Power Sour. 156, 533–540 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Sharma, S. Singh, N. Khare, Int. J. Hydrog. Energy 41, 21088–21098 (2016)CrossRefGoogle Scholar
  28. 28.
    H.J. Yun, H. Lee, J.B. Joo, W. Kim, J. Yi, J. Phys. Chem. C 113, 3050–3055 (2009)CrossRefGoogle Scholar
  29. 29.
    S. Saha, N. Chaudhary, H. Mittal, G. Gupta, M. Khanuja, Int. Nano Lett. 9, 127–139 (2019)CrossRefGoogle Scholar
  30. 30.
    H.S. Patel, J.R. Rathod, K.D. Patel, V.M. Pathak, R. Srivastava, Adv. Mater. Res. 665, 239–253 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dipak A. Tonpe
    • 1
  • Ketan P. Gattu
    • 1
  • Vishnu V. Kutwade
    • 1
  • Makrand E. Sonawane
    • 1
  • Avinash S. Dive
    • 1
  • Ramphal Sharma
    • 1
    Email author
  1. 1.Department of NanotechnologyDr. Babasaheb Ambedkar Marathwada UniversityAurangabadIndia

Personalised recommendations