Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16041–16048 | Cite as

Electrical properties and defect compensation mechanism of B-site Cu2+ substituted K0.5Na0.5NbO3 ceramics

  • Pengrong RenEmail author
  • Yike Wang
  • Jiale Wang
  • Dong Ren
  • Liang Sun
  • Xiao Liu
  • Fuxue Yan
  • Gaoyang Zhao
Article
  • 29 Downloads

Abstract

Cu2+ substituted K0.5Na0.5NbO3 ceramics at B-site K0.5Na0.5(Nb1−xCux)O3−3x/2 (KNNC) were prepared by a solid state method. The dielectric, ferroelectric properties and defect compensation mechanism were studied. With the concentration of Cu2+ increasing from 0.005 to 0.10, permittivity and dielectric loss decrease, but further increasing the concentration of Cu2+ increasing leads to the increment of permittivity and dielectric loss. All KNNC ceramics exhibit double hysteresis loop characteristics. When the doping concentration Cu2+ is low (x = 0.0075), the double hysteresis loop disappears at large electric field, nonetheless, when x = 0.015, it maintains the characteristics of the double hysteresis loop even under the high electric field. The corresponding mechanism is explained from the aspects of correlation between defect dipoles and polarization orientation.

Notes

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (51802246), Natural Science Basic Research Plan in Shaanxi Province of China (2018JQ5110), State Key Laboratory of Solidification Processing in NWPU (SKLSP201839), Fund Program of the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province, Special Scientific Research Plan Projects of Shaanxi Education Department (17JK0382) and Scientific and Technological Project of Yulin City (2016-16-6).

References

  1. 1.
    K. Uchino, Ferroelectric Devices (Marcel Dekker Inc, New York, 2000), pp. 1–10Google Scholar
  2. 2.
    B. Jaff, Piezoelectric Ceramics (Academic Press, London, 1971), pp. 151–161Google Scholar
  3. 3.
    J.E. Garcia, R. Pérez, A. Albareda, J.A. Eiras, Non-linear dielectric and piezoelectric response in undoped and Nb5+ or Fe3+ doped PZT ceramic system. J. Eur. Ceram. Soc. 27, 4029–4032 (2007)CrossRefGoogle Scholar
  4. 4.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimurac, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015)CrossRefGoogle Scholar
  5. 5.
    T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19, 111–124 (2007)CrossRefGoogle Scholar
  6. 6.
    L.J. Liu, D.P. Shi, L.L. Fan, J. Chen, G.Z. Li, L. Fang, B. Elouadi, Ferroic properties of Fe-doped and Cu-doped K0.45Na0.49Li0.06NbO3 ceramics. J. Mater. Sci. 26, 6592–6598 (2015)Google Scholar
  7. 7.
    N.M. Hagh, K. Kerman, B. Jadidian, A. Safari, Dielectric and piezoelectric properties of Cu2+-doped alkali niobates. J. Eur. Ceram. Soc. 29, 2325–2332 (2009)CrossRefGoogle Scholar
  8. 8.
    D. Lin, K.W. Kwok, H.L.W. Chan, Piezoelectric and ferroelectric properties of Cu-doped K0.5Na0.5NbO3 lead-free ceramics. J. Phys. D 41, 045401 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Körbel, P. Marton, C. Elsässer, Formation of vacancies and copper substitutionals in potassium sodium niobate under various processing conditions. Phys. Rev. B 81, 174115 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Shigemi, T. Wada, Evaluations of phases and vacancy formation energies in KNbO3 by first-principles calculation. Jpn. J. Appl. Phys. 44(Part 1), 8048–8054 (2005)CrossRefGoogle Scholar
  11. 11.
    D. Lin, K.W. Kwok, H.L.W. Chan, Double hysteresis loop in Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 90, 232903 (2007)CrossRefGoogle Scholar
  12. 12.
    S.M. Ke, H.T. Huang, H.Q. Fan, H.K. Lee, L.M. Zhou, Y.W. Mai, Antiferroelectric-like properties and enhanced polarization of Cu-doped K0.5Na0.5NbO3 piezoelectric ceramics. Appl. Phys. Lett. 101, 082901 (2012)CrossRefGoogle Scholar
  13. 13.
    L.J. Liu, H.Q. Fan, L. Fang, X.L. Chen, H. Dammak, M.P. Thi, Effects of Na/K evaporation on electrical properties and intrinsic defects in Na0.5K0.5NbO3 ceramics. Mater. Chem. Phys. 117, 138–141 (2009)CrossRefGoogle Scholar
  14. 14.
    X. Liu, Y.X. Zhao, J. Shi, H.L. Du, X.M. Xu, H. Lu, J.F. Che, X.Y. Li, Improvement of dielectric and ferroelectric properties in bismuth sodium titanate based relaxors through Bi non-stoichiometry. J. Alloys Compd. 799, 231–238 (2019)CrossRefGoogle Scholar
  15. 15.
    Y. Jung, S.Y. Choi, S.J.L. Kang, Effect of oxygen partial pressure on grain boundary structure and grain growth behavior in BaTiO3. Acta Mater. 54, 2849–2855 (2006)CrossRefGoogle Scholar
  16. 16.
    P.R. Ren, Z.C. Liu, X. Wang, Z.F. Duan, Y.H. Wan, F.X. Yan, G.Y. Zhao, Dielectric and energy storage properties of SrTiO3 and SrZrO3 modified Bi0.5Na0.5TiO3–Sr0.8Bi0.10.1TiO3 based ceramics. J. Alloys Compd. 742, 683–689 (2018)CrossRefGoogle Scholar
  17. 17.
    X.H. Tan, H.Q. Fan, S.M. Ke, L.M. Zhou, Y.W. Mai, H.T. Huang, Structural dependence of piezoelectric, dielectric and ferroelectric properties of K0.5Na0.5(Nb1−2x/5Cux)O3 lead-free ceramics with high Qm. Mater. Res. Bull. 47, 4472–4477 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Arlt, D. Hennings, G. Dewith, Dielectric properties of fine-grained barium-titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985)CrossRefGoogle Scholar
  19. 19.
    W.F. Liang, D.Q. Xiao, J.G. Wu, W.J. Wu, J.G. Zhu, Origin of high mechanical quality factor in CuO-doped (K, Na)NbO3-based ceramics. Front. Mater. Sci. 8, 165–175 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, School of Materials Science and EngineeringXi’an University of TechnologyXi’anPeople’s Republic of China
  2. 2.Key Laboratory of Materials Processing Engineering, College of Materials Science and EngineeringXi’an Shiyou UniversityXi’anPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringXi’an University of Sciences and TechnologyXi’anPeople’s Republic of China

Personalised recommendations