Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 16030–16040 | Cite as

Homostructured rutile TiO2 nanotree arrays thin film electrodes with nitrogen doping for enhanced photoelectrochemical performance

  • Xiangmei Ning
  • Jinliang HuangEmail author
  • Lihua Li
  • Yongjun Gu
  • Shuguo Jia
  • Ranfeng Qiu
  • Senlin Li
  • Bok H. Kim
Article
  • 47 Downloads

Abstract

Homostructured rutile TiO2 nanotree arrays thin films with nitrogen doping were synthesized on FTO glass substrates via a two-step hydrothermal method. The crystal structure and morphology of nanotree arrays thin films were characterized by means of X-ray diffractometer and field-emission scanning electron microscopy. Furthermore, the optical and photoelectrochemical performance of nitrogen doped TiO2 nanotree arrays thin films was analyzed respectively using diffuse reflectance spectroscopy, electrochemical impedance spectroscopy, linear sweep voltammetry, transient photocurrent and Mott–Schottky measurements. The results showed that nitrogen doping significantly affected the morphology of branched nanostructure, electron energy band structure, electron transportation and charge carrier recombination at the surface and interface of nanotrees. Optimized photoelectrochemical performance was achieved with relatively lower electron transport resistance and higher photocurrent density by the TiO2 nanotree arrays thin film with N/Ti molar ratio of 1, which can be mainly attributed to the formation of appropriate branched nanostructure to improve photoexcited electrons rate and new localized mid-gap states energy levels due to the nitrogen doping.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 50571035 and 51875177) and Natural Science Foundation of Henan Province (Grant No. 162300410088).

References

  1. 1.
    M.R. Mohammadi, R.R.M. Louca, D.J. Fray, M.E. Welland, Dye-sensitized solar cells based on a single layer deposition of TiO2 from a new formulation paste and their photovoltaic performance. Sol. Energy 86, 2654–2664 (2012)CrossRefGoogle Scholar
  2. 2.
    T.B. Raju, J.V. Vaghasiya, M.A. Afroz, S.S. Soni, P.K. Iyer, Design, synthesis and DSSC performance of o-fluorine substituted phenylene spacer sensitizers: effect of TiO2 thickness variation. Phys. Chem. Chem. Phys. 18, 28485–28491 (2016)CrossRefGoogle Scholar
  3. 3.
    M.J. Yang, B. Ding, J.K. Lee, Surface electrochemical properties of niobium-doped titanium dioxide nanorods and their effect on carrier collection efficiency of dye sensitized solar cells. J. Power Sources 245, 301–307 (2014)CrossRefGoogle Scholar
  4. 4.
    K.S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells. Renew. Sustain. Energ. Rev. 37, 397–407 (2014)CrossRefGoogle Scholar
  5. 5.
    M.A. Basit, M.A. Abbas, E.S. Jung, I. Ali, D.W. Kim, J.H. Bang, T.J. Park, Enhanced PbS quantum dot loading on TiO2 photoanode using atomic-layer-deposited ZnS interfacial layer for quantum dot-sensitized solar cells. Mater. Chem. Phys. 220, 293–298 (2018)CrossRefGoogle Scholar
  6. 6.
    D. Sharma, R. Jha, S. Kumar, Quantum dot sensitized solar cell: recent advances and future perspectives in photoanode. Sol. Energy Mater. Sol. Cells 155, 294–322 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, X.L. Zhong, D.G. Zhang, W.J. Duan, X.L. Lia, S.Z. Zheng, J.B. Wang, TiO2 nanorod arrays/ZnO nanosheets heterostructured photoanode for quantum-dot-sensitized solar cells. Sol. Energy 166, 371–378 (2018)CrossRefGoogle Scholar
  8. 8.
    N.J. Jeon, H. Na, E.H. Jung, T.Y. Yang, Y.G. Lee, G. Kim, H.W. Shin, S.I. Seok, J. Lee, J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 3, 682–689 (2018)CrossRefGoogle Scholar
  9. 9.
    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  10. 10.
    W. Chen, Y.Z. Wu, Y.F. Yue, J. Liu, W.J. Zhang, X.D. Yang, H. Chen, E.B. Bi, I. Ashraful, M. Gratzel, L.Y. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015)CrossRefGoogle Scholar
  11. 11.
    W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, S.I. Seok, Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017)CrossRefGoogle Scholar
  12. 12.
    N. Liu, X.Y. Chen, J.I. Zhang, J.W. Schwank, A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal. Today 225, 34–51 (2014)CrossRefGoogle Scholar
  13. 13.
    H. Ali, N. Ismail, M.S. Amin, M. Mekewi, Efficient photoelectrodes from anatase TiO2 nanotube arrays decorated with particles/rods/3D microflower rutile crystals for photoelectrochemical water splitting. J. Solid State Electrochem. 21, 1605–1613 (2017)CrossRefGoogle Scholar
  14. 14.
    Z. Lan, W.X. Wu, S. Zhang, L.F. Que, J.H. Wu, An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J. Solid State Electrochem. 20, 2643–2650 (2016)CrossRefGoogle Scholar
  15. 15.
    A.Q.D. Faisal, Synthesis and characteristics study of TiO2 nanowires and nanoflowers on FTO/glass and glass substrates via hydrothermal technique. J. Mater. Sci. 26, 317–321 (2015)Google Scholar
  16. 16.
    P.A. Sedach, T.J. Gordon, S.Y. Sayed, T. Furstenhaupt, R.H. Sui, T. Baumgartner, C.P. Berlinguette, Solution growth of anatase TiO2 nanowires from transparent conducting glass substrates. J. Mater. Chem. 20, 5063–5069 (2010)CrossRefGoogle Scholar
  17. 17.
    L.T. Tseng, X. Luo, N. Bao, J. Ding, S. Li, J.B. Yi, Structures and properties of transition-metal-doped TiO2 nanorods. Mater. Lett. 170, 142–146 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Liu, L. Chu, R.Y. Hu, R. Zhang, Y.H. Ma, Y. Pu, J. Zhang, J.P. Yang, X.A. Li, W. Huang, Diameter engineering on TiO2 nanorod arrays for improved hole-conductor free perovskite solar cells. Sol. Energy 166, 42–49 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Yu, Y.Z. Long, B. Sun, Z.Y. Fan, Recent advances in solar cells based on one-dimensional nanostructure arrays. Nanoscale 4, 2783–2796 (2012)CrossRefGoogle Scholar
  20. 20.
    H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13, 2412–2417 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Wang, Y.S. Bai, Q. Wu, W. Zhou, H. Zhang, J.H. Li, L. Guo, Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 7008–7013 (2011)CrossRefGoogle Scholar
  22. 22.
    L.L. Fang, X.Z. Wang, Z. Wang, Z.Z. Gong, L.P. Jin, J. Li, M. Zhang, G. He, X.S. Jiang, Z.Q. Sun, Heterostructured TiO2 nanotree arrays with silver quantum dots loading for enhanced photoelectrochemical properties. J. Alloys Compd. 730, 110–118 (2018)CrossRefGoogle Scholar
  23. 23.
    A. Hu, J.Y. Wang, S.H. Qu, Z.C. Zhong, S. Wang, G.J. Liang, Hydrothermal growth of branched hierarchical TiO2 nanorod arrays for application in dye-sensitized solar cells. J. Mater. Sci. 28, 3415–3422 (2017)Google Scholar
  24. 24.
    X. Sheng, D.Q. He, J. Yang, K. Zhu, X.J. Feng, Oriented assembled TiO2 hierarchical nanowire arrays with fast electron transport properties. Nano Lett. 14, 1848–1852 (2014)CrossRefGoogle Scholar
  25. 25.
    S.J. Kwon, H.B. Im, J.E. Nam, J.K. Kang, T.S. Hwang, K.B. Yi, Hydrothermal synthesis of rutile-anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells. Appl. Surf. Sci. 320, 487–493 (2014)CrossRefGoogle Scholar
  26. 26.
    W.Q. Wu, H.L. Feng, H.Y. Chen, D.B. Kuang, C.Y. Su, Recent advances in hierarchically three-dimensional titanium dioxide nanotree arrays for high-performance solar cells. J. Mater. Chem. A 5, 12699–12717 (2017)CrossRefGoogle Scholar
  27. 27.
    M.J. Yang, R. Guo, K. Kadel, Y.Y. Liu, K. O’Shea, R. Bone, X.W. Wang, J. He, W.Z. Li, Improved charge transport of Nb-doped TiO2 nanorods in methylammonium lead iodide bromide perovskite solar cell. J. Mater. Chem. A 2, 19616–19622 (2014)CrossRefGoogle Scholar
  28. 28.
    S.K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y. Vaynzof, A. Santhala, S.I. Watanabe, D.J. Hollman, N. Noel, A. Sepe, U. Wiesner, R. Friend, H.J. Snaith, U. Steiner, Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv. Funct. Mater. 24, 6046–6055 (2014)CrossRefGoogle Scholar
  29. 29.
    Q.P. Liu, Photovoltaic performance improvement of dye-sensitized solar cells based on Mg-doped TiO2 thin films. Electrochim. Acta 129, 459–462 (2014)CrossRefGoogle Scholar
  30. 30.
    J. Song, S.P. Li, Y.L. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X.Q. Gu, Y.H. Qiang, Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. J. Alloys Compd. 694, 1232–1238 (2017)CrossRefGoogle Scholar
  31. 31.
    X.Q. Zhang, Y.P. Wu, Y. Huang, Z.H. Zhou, S. Shen, Reduction of oxygen vacancy and enhanced efficiency of perovskite solar cell by doping fluorine into TiO2. J. Alloys Compd. 681, 191–196 (2016)CrossRefGoogle Scholar
  32. 32.
    Q. Sun, Y. Hong, Q.H. Liu, M. Zhang, L.Y. Yu, L.F. Dong, Growth of nitrogen-doped rutile TiO2 nanorod arrays and their improved performance in all-solid-state solar cells. Mater. Res. Express 4, 075023 (2017)CrossRefGoogle Scholar
  33. 33.
    W. Guo, Y.H. Shen, L.Q. Wu, Y.R. Gao, T.L. Ma, Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. J. Phys. Chem. C 115, 21494–21499 (2011)CrossRefGoogle Scholar
  34. 34.
    H.J. Tian, L.H. Hu, W.X. Li, J. Sheng, S.Y. Xua, S.Y. Dai, A facile synthesis of anatase N, B codoped TiO2 anodes for improved-performance dye-sensitized solar cells. J. Mater. Chem. 21, 7074–7077 (2011)CrossRefGoogle Scholar
  35. 35.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)CrossRefGoogle Scholar
  36. 36.
    T. Ma, M. Akiyama, E. Abe, I. Imai, High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode. Nano Lett. 5, 2543–2547 (2005)CrossRefGoogle Scholar
  37. 37.
    H.J. Tian, L.H. Hu, C.N. Zhang, W.Q. Liu, Y. Huang, L. Mo, L. Guo, J. Sheng, S.Y. Dai, Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. J. Phys. Chem. C 114, 1627–1632 (2010)CrossRefGoogle Scholar
  38. 38.
    J. Zhang, Q. Sun, J. Zheng, X. Zhang, Y. Cui, P. Wang, W. Li, Y. Zhu, The characterization of nitrogen doped TiO2 photoanodes and its application in the dye sensitized solar cells. J. Renew. Sustain. Energy 3, 033108 (2011)CrossRefGoogle Scholar
  39. 39.
    Y.N. Xie, N. Huang, Y.M. Liu, W.W. Sun, H.F. Mehnane, S.J. You, L.Y. Wang, W. Liu, S.S. Guo, X.Z. Zhao, Photoelectrodes modification by N doping for dye sensitized solar cells. Electrochim. Acta 93, 202–206 (2013)CrossRefGoogle Scholar
  40. 40.
    M. Motlak, M.S. Akhtar, N.A.M. Barakat, A.M. Hamza, O.B. Yang, H.Y. Kim, High-efficiency electrode based on nitrogen-doped TiO2 nanofibers for dye-sensitized solar cells. Electrochim. Acta 115, 493–498 (2014)CrossRefGoogle Scholar
  41. 41.
    S. Shiva, M. Raheleh, I. Azam, T. Nima, A new strategy on utilizing nitrogen doped TiO2 in nanostructured solar cells: embedded multifunctional N-TiO2 scattering particles in mesoporous photoanode. Mater. Res. Bull. 72, 64–69 (2015)CrossRefGoogle Scholar
  42. 42.
    R. Kushwaha, R. Chauhan, P. Srivastava, L. Bahadur, Synthesis and characterization of nitrogen-doped TiO2 samples and their application as thin film electrodes in dye-sensitized solar cells. J. Solid State Electrochem. 19, 507–517 (2015)CrossRefGoogle Scholar
  43. 43.
    Z.L. Zhang, J.F. Li, X.L. Wang, J.Q. Qin, W.J. Shi, Y.F. Liu, H.P. Gao, Y.L. Mao, Enhancement of perovskite solar cells efficiency using N-doped TiO2 nanorod arrays as electron transfer layer. Nanoscale Res. Lett. 12, 43–48 (2017)CrossRefGoogle Scholar
  44. 44.
    V. Jordan, U. Javornik, J. Plavec, A. Podgornik, A. Rečnik, Self-assembly of multilevel branched rutile-type TiO2 structures via oriented lateral and twin attachment. Sci. Rep. 6, 24216 (2016)CrossRefGoogle Scholar
  45. 45.
    D.S. Li, F. Soberanis, J. Fu, W.T. Hou, J.Z. Wu, D. Kisailus, Growth mechanism of highly branched titanium dioxide nanowires via oriented attachment. Cryst. Growth Des. 13, 422–428 (2013)CrossRefGoogle Scholar
  46. 46.
    Y. Cong, J.L. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111, 6976–6982 (2007)CrossRefGoogle Scholar
  47. 47.
    D.H. Wang, L. Jia, X.L. Wu, L.Q. Lu, A.W. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity. Nanoscale 4, 576–584 (2012)CrossRefGoogle Scholar
  48. 48.
    X.S. Zhou, F. Peng, H.J. Wang, H. Yu, Boron and nitrogen-codoped TiO2 nanorods: synthesis, characterization, and photoelectrochemical properties. J. Solid State Chem. 184, 3002–3007 (2011)CrossRefGoogle Scholar
  49. 49.
    S. Singh, V. Sharma, D. Saini, S. Shekhawat, K. Asokan, K. Sachdev, Influence of 100 keV Ar+ implantation on electrical and optical properties of TiO2/Ag/TiO2 multilayer films. Mater. Sci. Semicond. Process. 75, 18–25 (2018)CrossRefGoogle Scholar
  50. 50.
    M. Pelaeza, P. Falarasb, V. Likodimosb, A.G. Kontosb, A.A. de la Cruzc, K. O’shead, D.D. Dionysiou, Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR. Appl. Catal. B 99, 378–387 (2010)CrossRefGoogle Scholar
  51. 51.
    L.S. Yoong, F.K. Chong, B.K. Dutta, Development of copper-doped TiO2 photocatalyst for hydrogen production under visible light. Energy 34, 1652–1661 (2009)CrossRefGoogle Scholar
  52. 52.
    G.D. Yang, Z. Jiang, H.H. Shi, T.C. Xiao, Z.F. Yan, Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301–5309 (2010)CrossRefGoogle Scholar
  53. 53.
    D. Guerrero-Araque, P. Acevedo-Peña, D. Ramírez-Ortega, H.A. Calderon, R. Gómez, Charge transfer processes involved in photocatalytic hydrogen production over CuO/ZrO2-TiO2 materials. Int. J. Hydrogen Energy 42, 9744–9753 (2017)CrossRefGoogle Scholar
  54. 54.
    C. Fàbrega, T. Andreu, A. Tarancón, C. Flox, A. Morata, L. Calvo-Barriob, J.R. Morante, Optimization of surface charge transfer processes on rutile TiO2 nanorods photoanodes for water splitting. Int. J. Hydrogen Energy 38, 2979–2985 (2013)CrossRefGoogle Scholar
  55. 55.
    C. Pablos, J. Marugán, R. van Grieken, P.S.M. Dunlop, J.W.J. Hamilton, D.D. Dionysiou, J.A. Byrne, Electrochemical enhancement of photocatalytic disinfection on aligned TiO2 and nitrogen doped TiO2 nanotubes. Molecules 22, 704 (2017)CrossRefGoogle Scholar
  56. 56.
    Y.Q. Dai, Y.B. Sun, J. Yao, D.D. Ling, Y.M. Wang, H. Long, X.T. Wang, B.P. Lin, T.Y.H. Zeng, Y.M. Sun, Graphene-wrapped TiO2 nanofibers with effective interfacial coupling as ultrafast electron transfer bridges in novel photoanodes. J. Mater. Chem. A 2, 1060–1067 (2014)CrossRefGoogle Scholar
  57. 57.
    J.A. Byrne, B.R. Eggins, Photoelectrochemistry of oxalate on particulate TiO2 electrodes. J. Electroanal. Chem. 457, 61–72 (1998)CrossRefGoogle Scholar
  58. 58.
    M.M. Han, J.H. Jia, 3D Bi2S3/TiO2 cross-linked heterostructure: an efficient strategy to improve charge transport and separation for high photoelectrochemical performance. J. Power Sources 329, 23–30 (2016)CrossRefGoogle Scholar
  59. 59.
    M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. J. Power Sources 181, 46–55 (2008)CrossRefGoogle Scholar
  60. 60.
    H. Irie, S. Washizuka, Y. Watanabe, T. Kako, K. Hashimoto, Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO2 films. J. Electrochem. Soc. 152, E351–E356 (2005)CrossRefGoogle Scholar
  61. 61.
    Y.D. Duan, N.Q. Fu, Q.P. Liu, Y.Y. Fang, X.W. Zhou, J.B. Zhang, Y. Lin, Sn-doped TiO2 photoanode for dye-sensitized solar cells. J. Phys. Chem. C 116, 8888–8893 (2012)CrossRefGoogle Scholar
  62. 62.
    E.L. Castellanos-Leal, P. Acevedo-Peña, V.R. Güiza-Argüello, E.M. Córdoba-Tuta, N and F codoped TiO2 thin films on stainless steel for photoelectrocatalytic removal of cyanide ions in aqueous solutions. Mater. Res. 20, 487–495 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiangmei Ning
    • 1
    • 2
    • 3
  • Jinliang Huang
    • 1
    • 2
    • 3
    Email author
  • Lihua Li
    • 1
  • Yongjun Gu
    • 1
  • Shuguo Jia
    • 1
    • 2
    • 3
  • Ranfeng Qiu
    • 1
    • 2
    • 3
  • Senlin Li
    • 1
  • Bok H. Kim
    • 1
    • 4
  1. 1.School of Materials Science and EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.The Key Laboratory of Henan Province on Nonferrous Metallic Materials Science and Fabrication TechnologyLuoyangChina
  3. 3.Innovation Center of Nonferrous Metals of Henan ProvinceLuoyangChina
  4. 4.Division of Advanced Materials Engineering, Hydrogen and Fuel Cell Research CenterChonbuk National UniversityJeonbukSouth Korea

Personalised recommendations